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INTRODUCTION 

The term "stress" has its roots in the work of 

Empedocles, who lived in the fifth century B.C. Hans 

Selye, however, coined the term "stress" as we know it 

today in the late 1930s.
[1,2]

 The definition of stress given 

by Webster's Medical Dictionary ("a state of bodily or 

mental tension resulting from factors that tend to alter an 

existent equilibrium"
[3]

) is compatible with how 

researchers in this field currently use the term,
[2]

 despite 

the fact that it is intrinsically difficult to define (in fact, 

many experts refuse to do so).  

 

It is difficult to define stress succinctly enough to 

encompass all of its implications because it is such a vast 

term. Hippocrates, the Greek philosopher, may have 

been the first to attempt to explain stress in terms of 

"disharmony," which was thought to show as illness 

when disturbed, and "balance," which was seen to be a 

necessary state of health.
[2]

 Hans Seyle developed the 

general adaption syndrome at the beginning of the 20th 

century, offering the first thorough biological 

explanation of stress.
[5]

 This was recognised in the 

veterinary field as an unusual or drastic adaptation made 

by the animal's physiology to deal with unfavourable 

changes in its surroundings and care.
[32]

 Hippocrates' 

description of internal balance is known as homeostasis 

in the perspective of current biology. 

 

Stressors are any number of physiological, 

psychological, and environmental stimuli that interfere 

with equilibrium, or the regular regulation cycles 

(homeostasis). Multiple factors influence the result of 

stress, which can be either distress (illness) or recovered 

homeostasis.  

 

Stress is defined as a psychologically upsetting state 

brought on by unfavourable outside factors that have the 

potential to have an impact on one's physical health. 

Among the major psychological stressors are 

transportation, fear (fright and flight response), 

crowding, and weaning through social reorganisation. 

Because stress is common, recurrent in nature, and 

harmful to health, it is a serious worry. 

 

Numerous studies have shown that a range of 

psychological stressors, such as academic pressure, loss 

of self-worth, and bereavement, can cause immunologic 

impairment to be seen in the laboratory; the 

neuroendocrine pathways and anatomic structures within 

the nervous system that mediate these effects have been 

clarified.
[4–9]

 Numerous stress-responsive neuropeptides 

and neurotransmitters, including corticotropin-releasing 

factor, adrenocorticotropin, glucocorticoids, Beta-

endorphin, prolactin, somatotropin, arginine, 

vasopressin, norepinephrine, epinephrine, enkephalin, 

and substance P, have been demonstrated to interact with 

immune cells in vitro.
[10]

 These molecules have been 

proposed as mediators of stress-induced 

immunosuppression. Intestinal vasoactive peptide. It has 

also been demonstrated that a few of these peptides, 

along with other neurohormones like melatonin,
[11]

 have 

immune-augmenting or antistress properties. Conversely, 
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Research has indicated that individuals who experience higher amounts of ongoing 
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it has been demonstrated that the immune system and the 

brain communicate through an expanding repertoire of 

"immune-transmitters," such as interleukin-6, 

interleukin-1, tumour necrosis factor-a, and interferons,
[4]

 

additionally, several neuroendocrine hormones generated 

by the immune cells themselves may be involved.
[12]

 

 

The field of infectious disease prevention and control has 

entered a revolutionary era marked by the growth of 

Artificial Intelligence (AI) technologies in recent years. 

These days, artificial intelligence (AI) is driving fast 

forward, increasing the search for anti-infective drugs, 

improving our knowledge of infection biology, and 

hastening the creation of novel diagnostics. In this 

review, highlighting the advancements made possible by 

AI in each infectious disease scenario. 

 

 

 
Figure 1: A physiological, psychological, or environmental stressor can cause a condition of disrupted 

homeostasis, which is known as stress. 

 

Stressful life experiences reduce the host's ability to fight 

off infection is widely accepted. Events that place more 

demands on a person than they can handle can cause a 

psychological stress reaction, which is characterised by 

unfavourable cognitive and emotional states.
[13]

 In turn, it 

is believed that psychological stress affects immune 

function via altering immune cells through hormone-

mediated processes or by innervating lymphoid tissue 

through autonomic nerves.
[14-16]

 Adoption of coping 

mechanisms such increased alcohol and tobacco use and 

smoking might also affect immunological responses.
[17]

 

 

Early-life exposure to adversity, such as stress or 

maternal deprivation, can shape or reprogram persistent 

neuroendocrine, behavioural, and metabolic changes 

(Maccari et al., 2014).
[18]

 These programming effects 

may be viewed as adaptive, allowing an organism to 

adapt to unfavourable conditions, but new research 

indicates that over time, this programming may be 

largely maladaptive, increasing an individual's 

susceptibility to adulthood pathways, such as metabolic 

syndrome, cardiovascular disease, respiratory and 

chronic lung diseases, allergies, and mood disorders 

(Maccari et al., 2014; Merlot et al., 2008).
[18,19]

 There is 

significant proof linking stressful life experiences and 

stress perception to immune system alterations.
[20-22]

 

While psychological stress is frequently associated with 

immune response suppression, the consequences of 

immunological alterations brought on by stress for 

disease vulnerability remain unclear.
[23,24]

 Previous 

research has shown a direct correlation between 

psychological stress and an increased incidence of 

confirmed acute infectious respiratory infection.
[25-27]

  

A growing body of research indicates that psychological 

stress experienced throughout early childhood may 

impact the immune system's development, which in turn 

may change an individual's capacity to handle viral 

challenges. Aversive or demanding circumstances that 

exhaust an organism's behavioural resources are known 

as psychosocial stressors (Lazarus, 1966).
[28]

 A cognitive 

assessment of "what is at stake" and "what can be done 

about it" leads to psychosocial stress, which involves 

dangers to one's social standing, social self-esteem, 

respect, or acceptance within a group. 

 

Stress and Disease 

Psychological stress has been demonstrated for many 

years to markedly enhance the vulnerability to 

disease.
[33,34]

 Twenty years ago, studies on infectious 

diseases were overlooked by researchers looking into the 

psychological aspects of human disease, and they mostly 

focused on cancer and coronary heart disease.
[35]

 

However, as evidence indicating psychological variables 

affected immune function was published, interest in this 

field began to change.
[36]

 In addition, there was a 

growing recognition that stress and other psychological 

variables contributed to the development of acquired 

immunodeficiency syndrome (AIDS).
[37]

 

 

These findings sparked interest in the impact of stressors 

in other diseases by demonstrating the substantial role 

that psychological stressors play in lowering immunity. 

Understanding the genesis and severity of respiratory 

disorders as a result of psychological stress has received 

a lot of attention.
[38]
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Interaction of Virus and Bacteria 

Numerous species have shown an increased risk of dying 

from bacterial respiratory infections that follow a first 

viral infection. Viral-bacterial synergy is a phenomena 

that was first identified in the aftermath of human 

influenza epidemics, when a range of secondary bacterial 

respiratory illnesses were linked to higher fatality 

rates.
[39]

 Research has also connected a range of 

psychological stressors to higher rates and more severe 

respiratory illnesses in both humans and animals.
[40-43]

 It 

is well established that respiratory illnesses have a 

significant financial impact on the food sector, animal 

welfare, and human health.
[44,45]

 

 

Relationship between stress and Viral & bacterial 

infection 

There have been reports that demonstrate a clear 

correlation between immune system function and 

stress.
[22]

 Similarly, other studies have shown that social 

stressors could also increase the risk for upper 

respiratory infection.
[25]

 The most convincing proof of a 

connection between stress and cold susceptibility comes 

from a viral challenge research.
[23]

 Other studies have 

extended these results by considering a wider range of 

psychosocial factors.
[46]

 A variety of psychological 

elements frequently function as mediators between stress 

and its consequences on health. Cohen and colleagues 

found that social support enhanced mucociliary clearance 

of infection and decreased the pace at which viruses 

replicate, indicating that social support frequently 

functions as a buffer against the negative consequences 

of stress.
[38,40]

 

 

In a different report, they looked at how social support 

and stress affected upper respiratory tract infections in a 

typical study.
[47]

 When stress levels were low, social 

support was linked to a lower risk of infection; but, when 

stress levels were high, social support had no effect. The 

relationships between psychosocial variables (stress, 

social support, mood swings) and viral exacerbations of 

asthma were investigated in a different study. The study 

kept many significant aspects of Cohen and colleagues' 

methodology, but it employed naturally occurring 

illnesses instead of infections created through 

experimentation.
[23]

 

 

In a study conducted by Isolde Gina Rojas et al 2002,
[48]

 

psychological stress hinders immunological and 

inflammatory responses necessary for the removal of 

microorganisms from the body and delays the healing of 

wounds. Three days before cutaneous wounds were 

placed, female SKH-1 mice were placed under restraint 

stress (RST) to see if stress enhances the susceptibility to 

wound infection. 

 

Stress response 

The body's initial line of defence against infectious 

pathogens (such bacteria and viruses) is the innate 

immune response, which gives an instantaneous and 

generalised reaction. Soon after, body starts to produce 

an adaptive immune response, in which white blood cells 

selectively target and destroy infections. 

 

Acute stress response 

An instant reaction to a stressful occurrence is known as 

the acute stress response. Stress hormones, which aid the 

body in producing energy, are released by the body as 

soon as possible. Muscle and brain tissues get this 

energy, and some immune system cells may become 

more active. In order to search for pathogenic bacteria, 

researchers have discovered that during times of severe 

stress, innate immune system cells become more active 

and circulate more widely throughout the body.
[49,50]

 

 

Chronic stress response 

When an individual consistently experiences acute stress 

reactions, chronic stress results. Long-term physiological 

changes brought on by chronic stress include elevated 

blood pressure, which can eventually lead to artery 

damage and heart disease. The persistent elevation of 

stress hormones may also lead to the depletion of white 

blood cells in the immune system, hence raising the risk 

of infections. High amounts of stress hormones impair 

the adaptive immune system during times of chronic 

stress. As a result, body may be less able to manufacture 

antibodies, heal more slowly, and be more vulnerable to 

infections.
[49,50]

 

 

Research has connected long-term stress to infections 

such as shingles, TB, herpes simplex virus reactivation, 

ulcers (produced by the Helicobacter pylori bacteria), 

and other infectious disorders.  

 

Certain research on immunisations have indicated a 

decline in efficacy in people who experience high levels 

of ongoing stress. It's unclear, though, how much of an 

impact stress actually has on the likelihood of 

infection.
[49]

 

 

HIV infection causes AIDS, a disease marked by 

profound immunodeficiency. Although stress does not 

directly cause HIV infection, it can hasten the 

progression of HIV infection into AIDS in those who 

already have it. 

 

According to a 2000 UNC-Chapel Hill study, males with 

HIV developed AIDS more quickly if they experienced 

ongoing stress throughout their lives. The chance of 

AIDS progression increasing with each stressful incident 

doubled.
[51]

  

 

Mechanism of stress-induced infection susceptibility 

The association between depression and psychological 

(psychogenic) and physical (neurogenic) stressors has 

long been recognised, there is evidence to suggest that 

systemic stressors, such as immune system 

modifications, may also have a stimulating effect.
[52]

 

Communication takes place among the autonomic, 

endocrine, central neurological, and immune systems,
[53]

 

such that psychological occurrences influencing central 
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neurochemical processes might influence immune 

function. On the other hand, immunological stimulation 

may impact central neurotransmitter activity and 

hormonal functions. Immune activation may therefore 

influence behavioural outcomes and may even be 

connected to behavioural pathology like depressive 

illness due to the neurochemical effects it imparts.
[54]

 

 

The idea that different stressors could lead to varied 

immune activation developed over time. Hans Seyles' 

GAS, which was developed through observation and 

testing on lab animals, provided the original theory. 

Seyle defined a common nonspecific stress response 

pathway using a range of stressors, including as pain, 

severe temperatures, and famine.
[55]

 The animal initiates 

a fight-or-flight response or emergency alert upon first 

sensing a stressor. Both overall metabolism and 

cardiovascular function are raised as a result of this 

catecholamine-driven response. 

 

The resistance phase, also known as the "conservation 

withdrawal reaction," is the body's physiological 

response to the increasing demands of preserving 

homeostasis, and it begins if the stressor continues. 

Prolonged stress triggers the fatigue phase and has the 

potential to cause pathology. Seyle's idea offered a 

similar reaction pathway to all the different stressors 

encountered, which helped to unify the stress 

phenomena.  

 

This system, known as the HPA axis, is involved in 

perception in the brain and causes the anterior pituitary 

to secrete ACTH by stimulating the production of 

vasopressin and hypothalamic corticotropin-releasing 

factor (CRF). 

 

 
 

Glucocorticoids (GC) are produced by the adrenal cortex 

in response to ACTH circulating. 

 

In order to convert fat into glucose for the central 

nervous system (CNS) and other purposes, 

glucocorticoids induce gluconeogenesis. As a result, 

GAS made it possible to identify stressors and, 

presumably, the animal's state of wellbeing through the 

measurement of GC levels. Since measuring GC levels 

was relatively simple, the notion appeared appealing.
[5]

 

 

Tragically, it has been shown that the GAS idea is overly 

simplistic. Mason's studies on Rhesus monkeys subjected 

to various stressors showed that distinct stressors elicited 

varied neuroendocrine reactions.
[55]

 For example, 

monkeys under emotional stress showed higher serum 

GC levels, but those under a heat-stress regimen did not 

exhibit higher serum GC levels. Certain stimuli elicited 

the typical production of neuroendocrine mediators in 

addition to GC.38 There are at least four possible 

pathways for neuroendocrine responses, according on 

newly available data on stressor response. These include 

the HPA axis, neuropeptides, neurotransmitters, and 

neuro-immunological peptides and receptors. They also 

involve the autonomic nervous system.
[5]

 

 

 

 

Prenatal psychosocial stress 

Pregnancy-related maternal psychosocial stress is linked 

to adverse outcomes for the foetus. Research utilising an 

extensive array of diverse methodologies and 

demographics substantiate a connection between adverse 

life experiences experienced during pregnancy and 

modifications in the maturation of critical bodily 

systems, reduced foetal growth, heightened likelihood of 

preterm birth, and a higher prevalence of low birth 

weight (Field, 2011; Field et al., 2004).
[29,30]

 Further 

research, bolstered by animal trials, has revealed 

alterations in the behaviour and physiology of offspring, 

suggesting that adverse events during pregnancy could 

have enduring consequences for health and welfare 

(Field, 2011; Glover et al., 2010).
[29,31]

 According to 

other research, prenatal psychological traumas may also 

affect the host's immunological response, which may 

have a significant impact on the host's later propensity to 

contract infectious diseases. 

 

Human research has shown a link between prenatal 

psychosocial stressors and a higher chance of developing 

a number of diseases in both adults and children. The 

majority of research used reports from mothers or their 

offspring to assess the incidence of significant stressful 

life events that occurred during or shortly before 

gestation. Major stressors like divorce, the death of a 

close relative, or financial troubles have been the subject 
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of many studies. For example, a sizable population-based 

cohort study assessed the correlation between mother 

exposure to spousal death, older child mortality, or 

maternal divorce during pregnancy and the rate of 

hospitalisation for infectious diseases in children ages 0–

14 years. The findings demonstrated a noteworthy rise in 

the likelihood of hospitalisation due to severe infectious 

illnesses for offspring whose mothers experienced these 

big stressful life events while pregnant. (Nielsen et al., 

2011).
[56]

 

 

Another large-scale population-based study y (Khashan 

et al., 2012) looked at the health of the offspring after the 

mother experienced the death of a spouse or child while 

she was pregnant or up to six months before she gave 

birth. The findings indicated that there was a greater risk 

of hospitalisation for asthma in children with any 

prenatal exposure to mourning during the exposure 

period; the risk was larger when the exposure period was 

limited to pregnancy alone.
[57]

 

 

The relationship between mother stress during pregnancy 

and the risk of childhood eczema was investigated in a 

second prospective cohort research. This study did not 

allow for a clear separation of the impact of psychosocial 

components because maternal stress was characterised as 

the cumulative effect of physical stressors such early 

pregnancy haemorrhage and social events like parental 

divorce. The findings, however, are consistent with 

earlier research showing that a mother's exposure to 

significant stress during pregnancy was linked to an 

increased risk of eczema in the first two years of the 

child's life (Sausenthaler et al., 2009).
[58]

 

 

Neonatal psychosocial Stress and Infectious disease 

The early environment has an impact on an individual's 

development, particularly in the newborn stage. 

Numerous studies have shown that early-life stress 

results in long-term alterations to the brain's structure 

and neurotransmitter systems; these neurobiological 

changes may be the cause of later-life greater sensitivity 

(Kaufman et al., 2000).
[59]

 Adverse experiences during 

infancy are linked to alterations in the stress reaction and 

brain structure in later life, and are connected to severe 

depression and further mental disorders (McEwen, 

2008).
[60]

 

 

Studies show a correlation between early adverse life 

experiences and elevated C-reactive protein levels, 

increased TNF-a and IL-6 secretion, elevated sICAM-1 

and E-selectin production, and increased nuclear factor-

kB activity. (Danese et al., 2007; Taylor et al., 2006; 

Kiecolt-Glaser et al., 2011; Pace et al., 2012; Slopen et 

al., 2010).
[61-65]

 

 

There is a correlation between higher rates of rheumatoid 

arthritis, cardiovascular illness, diabetes, and chronic 

lung diseases with child abuse and neglect (Danese et al., 

2007; Spitzer et al., 2013).
[61,66]

 Furthermore, greater 

CMV and Epstein-Barr virus antibody titers are linked to 

childhood traumas, and salivary herpes simplex virus-

specific antibody titers are higher in adolescents who 

experienced physical abuse as children (Shirtcliff et al., 

2009, Fagundes et al., 2013).
[67,68]

 

 

Artificial intelligence and infectious disease 

Artificial intelligence (AI) has been recognised as the 

most potent and promising analytical instrument now 

available to humanity. According to recent findings, 

machine learning adds value to image processing in 

situations where traditional methods are unable to detect 

early illness indications (Chen and Asch, 2017).
[70]

 This 

is especially true for cancer, whose detection and 

treatment are frequently aided by AI techniques (Boon et 

al., 2018).
[71]

 This is relevant even in developing nations 

when it is not possible to provide the best care due to a 

lack of resources, the expense of healthcare, and other 

issues. Recent research by Im et al. (2018)
[72]

 suggests 

that a low-cost point of care for lymphoma diagnosis 

based on deep learning and basic imaging may be 

possible. According to Xu et al. (2016),
[73]

 a number of 

studies recommended using Bayesian networks (BN) to 

describe statistical interdependence. According to Belle 

et al. (2013),
[74]

 a BN is a graph-based model of joint 

multivariate probability distributions that represents the 

characteristics of conditional independence between 

variables. 

 

Artificial intelligence in the diagnosis of Infectious 

disease 

Authorities have established procedures to identify 

people who are at risk due to their concern over the 

spread of infectious diseases. As a result, temperature 

checks are routinely carried out in Singapore airport 

terminals using a thermal camera to identify people who 

have excessive temperatures. This basic check is just one 

of several actions being taken to prevent the spread of 

illnesses. Recent methods that make use of mathematical 

modelling are making this kind of surveillance better. 

Sun et al. (2015)
[75]

 developed a comparable approach 

that uses vital sign categorisation to identify infected 

patients. In increasingly complex situations, machine 

learning techniques can be applied. To better separate 

gene sequences from bacteria than previous approaches 

like high-resolution melt (HRM), for example, a 

combination of Matlab, the leave one out cross-

validation (LOOCV) method, the support vector machine 

(SVM) learning algorithm, and nested one-versus-one 

(OVO) SVM was utilised. SVM and HRM together 

could identify isolated bacteria with a high degree of 

accuracy (100%) (Fraley et al., 2016).
[76]

 

 

The accuracy was impacted when using blood samples 

from patients in real life, which highlights the drawbacks 

of creating tools based solely on data produced in a 

laboratory setting. It is unknown if this resulted from the 

biological samples' poor quality or from the interactions 

of the bacteria in an unaltered environment. 

Nevertheless, this demonstrates that some practical 

considerations, such sample quality or lab procedure 
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duration, should be taken into account while developing 

mathematical tools. This was addressed in relation to the 

diagnosis of tuberculosis, which is the second most 

common cause of infection-related death worldwide 

(Saybani et al., 2015).
[77]

 

 

There are methods in place for diagnosing different 

diseases, such as the artificial immune recognition 

system (AIRS). AIRS was created utilising a 

characteristic of the immune system. The immune 

system's job is to identify dangers and remember them. 

Probably the most significant aspect of immunity is 

immunological memory, which makes it possible for 

humans to react more effectively the next time the 

infectious agent (danger) presents itself. According to 

Cuevas et al. (2012),
[79]

 the supervised machine learning 

techniques used by the AIRS (Watkins and Boggess, 

2002)
[78]

 have demonstrated good accuracy. Diagnosing 

malaria takes time and sometimes involves multiple 

health providers. Using very cheap digital in-line 

holographic microscopy data, machine learning 

algorithms were created to identify malaria-infected red 

blood cells (RBCs) (Go et al., 2018).
[80]

 

 

Autoregressive integrated moving average (ARIMA) is a 

tool that has been used by several teams from the United 

States (Kane et al., 2014),
[81]

 China, New Zealand 

(Zhang et al., 2014),
[82]

 and South Africa (Adeboye et al., 

2016)
[83]

 to predict infectious diseases. Although the 

ARIMA model was initially created for economic uses, it 

has been applied to other fields as well, such as illnesses 

that repeat or cycle. Because time series models like 

ARIMA remove high-frequency noise from data and 

identify local trends based on linear dependence in series 

observations, they are used to forecast future outbreaks. 

Dynamic relationships can be integrated into the ARIMA 

model, which can then be updated in response to current 

events. 

 

As a result, ARIMA models have been extensively 

utilised for forecasting epidemic time series, such as 

those involving tuberculosis, dengue disease, and 

hemorrhagic fever. Seasonality is a significant factor in 

the later and other infectious diseases (Mohammed et al., 

2018).
[84]

 Incidence and seasonality of tuberculosis in 

South Africa were examined using seasonal ARIMA 

(SARIMA) and neural network auto-regression 

(SARIMA-NNAR). This machine learning method 

showed that peak festival times are risk factors for HIV 

transmission and that coinfection issues, in particular, 

need to be addressed.  

 

Treatment and antimicrobial drug resistance 

Antibacterial and antiparasitic medication resistance is a 

serious issue, even with current diagnostic methods for 

malaria being rather good and likely to improve in the 

near future (Blasco et al., 2017).
[85]

 The advent of 

Plasmodium falciparum malaria parasites that are less 

susceptible to artemisinin-based combination therapies is 

posing a challenge to the 20-year-old practice of 

adopting artemisinin-based combination therapies. It was 

expected by mathematical modelling based on intrahost 

parasite stage-specific pharmacokinetic-

pharmacodynamic connections that drug action-resistant 

ring stages would lead to ART resistance (Saralamba et 

al., 2011).
[86]

 The presence of databases that reflect the 

problem of antibiotic resistance can aid in combating it 

more effectively (Jia et al., 2017).
[87]

 

 

Additionally, recent research has demonstrated the 

effectiveness of machine learning in determining a 

candidate compound's potential antibacterial activity 

(Wang et al., 2016).
[88]

 To predict mice's reaction to 

tuberculosis infection, Ekins et al. employed a number of 

machine learning techniques in a more methodical 

manner (Ekins et al., 2016).
[89]

 

 

Testing for HIV RNA in the blood is one method of 

tracking the virus's progression in the HIV case. 

Although this is a very effective way to modify therapy, 

it is rarely feasible in settings with limited resources. 

Antiretroviral therapy plays a critical role in the 

evolution of HIV infectivity (Petersen et al., 2008).
[90]

 

Therefore, it is imperative to ensure that therapy is 

administered effectively and that treatment adherence 

prevents viral load reduction.  

 

 
Figure: AI tools and their potential outcomes. 

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7153335/) 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7153335/
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CONCLUSION 

The significance of psychological stress and its impact 

on susceptibility to infectious diseases, particularly 

respiratory infections, were established by the current 

review. We conclude that there is an unexplained 

mechanism underlying psychological stress and 

infectious diseases, as evidenced by many literatures. To 

fully comprehend the physiological distinctions between 

acute and chronic stress, as well as the compounding 

effects of multiple stressors, more research is required. It 

is increasingly clear that stress can both increase an 

individual's risk of contracting an illness and increase the 

severity of an existing one. Prenatal and neonatal 

psychosocial stress are more prone to infectious diseases. 

Fighting infectious diseases is made possible in large 

part by artificial intelligence. AI also aids in the early 

detection and prevention of infectious diseases. 
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