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1. BACKGROUND 

Immortal time refers to a period of follow-up during 

which, by study design, death or the study outcome 

cannot occur.
[1-16]

 Immortal time typically arises in 

observational studies when the determination of a 

patient‟s treatment status involves a period before 

treatment initiation in studies, which are based on the 

“no treatment” strategy- namely, exposed versus 

unexposed patients; the latter group including those who 

remain on standard care for the disease.
[2,17,18]

 A bias is 

introduced when this period is not adequately accounted 

for in the assessment of the treatment effect. In the 

context of patients waiting for a specific intervention, 

this bias is generally referred to as waiting time bias in 

the literature.
[19-24]

 In the context of chart reviews, where 

we assess the safety and effectiveness of a particular 

drug by comparing the medical records of those who are 

treated against those on standard care during the study 

period, the bias arises when we ignore the period of 

standard care before the start of treatment with the drug. 

 

There are two main settings in observational studies 

involving the comparison of exposed and unexposed 

groups, where immortal time may arise: (1) patients in a 

queue having to wait for an intervention (e.g. heart 

transplantation), with the enrolment date on the waiting 

list representing the start of cohort entry and (2) patients 

in routine clinical practice whose treatments do not start 

from the date of diagnosis of the condition (i.e. cohort 

entry) but rather, when their physicians decide to 

intervene in compliance with the treatment guidelines for 

that specific disease.
[25]

 In both settings, immortal time 

bias may arise if the start of cohort entry is considered as 

the start of follow-up in the evaluation of treatment 

effect. This is because unlike the unexposed, none of the 

exposed could have experienced the outcome of interest 

whilst waiting to receive the treatment, which makes the 

period an immortal time for such patients. In routine 

clinical practice, the reason for prescribing a treatment 

by the physician may be associated with the risk of 

occurrence of the outcome of interest and so immortal 

time may pose only one source of bias.
[26-27]

 In this 

regard, immortal time bias does not apply to the 
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ABSTRACT 
Background: To propose the Entry-time Comparability Retention (ETCR) 

approach, a simple methodology that uses propensity scores to address the problem 

of immortal time bias with realistic assumptions. Methods: The exposure status of 

each member of a cohort is classified at cohort entry, based on whether the patient 

received treatment during the study period (i.e. exposed) or remained on standard 

care (i.e. unexposed). Two sets of propensity scores are derived on each patient: 1) 

at cohort entry- to construct blocks of comparable patients by propensity score 

matching each exposed patient to as many of the unexposed patients as possible, 

and 2) at treatment initiation- to identify those unexposed patients to be retained 

and be assigned the same start of follow-up to address the problem of immortal time 

bias. Using simulated data, the performance of the ETCR methodology with simple 

blocks of 1:n greedy matching, is compared with two of the leading alternatives- the 

Landmark design and the time-dependent Cox regression (TDCR) approach. 

Results: When compared with the crude model, the ETCR resulted in the largest 

reduction in the mean residual bias (i.e.  >27% vs 14% and 9% by the Landmark 

and TDCR respectively). Its estimates were consistently the least sensitive to 

variations in the different scenarios of our simulations. Conclusions: Propensity 

scores can be utilized as an effective design tool for creating and retaining 

comparable treatment groups to minimize immortal time bias. The ETCR does not 

introduce additional assumption, and it is particularly useful for studies involving a 

“no treatment” strategy. 
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intention-to-treat (ITT) analysis in randomized controlled 

trials (RCTs), where exposure status is defined at the 

start of follow-up even if the exposure is scheduled 

sometime after the study baseline.
[28-29] 

 

The literature on immortal time bias offers several 

methods for addressing the problem, each with its own 

set of assumptions. These can be summarily categorized 

as those that involve (1) the time-dependent Cox models, 

(2) the Landmark approach, and (3) the matching-on-

time methods.
[28]

 Since immortal time bias is only one 

among many other sources of bias in observational 

studies, an effective solution should also facilitate 

comparability between the two groups being compared, 

with the best approach resulting in the maximum 

possible reduction of the different sources of bias. 

Indeed, this point is particularly important in the 

assessment of drug safety where bias, such as exposure 

misclassification, can be far more impactful. 

 

The aim of this paper is to propose the Entry-time 

Comparability Retention (ETCR) method as a simple 

approach for addressing immortal time bias using the 

propensity score (PS) methodology.
[30]

 Propensity score 

is usually employed to reduce the problem of selection 

bias in observational studies, and in this context, it can 

be defined as the probability that a person with a given 

set of relevant observed characteristics will be assigned 

to the exposed group as against being unexposed. The 

ETCR approach, which is a design tool, does not 

introduce any additional assumption to the study design 

and it can incorporate any of the current methods for 

addressing the problems of confounding.  The approach 

involves derivation of the PS at two different time points 

based on the characteristics and clinical histories of these 

patients: firstly, at cohort entry, to create blocks of 

comparable exposed and unexposed patients so as to 

assign the same start of follow-up for members of each 

block at treatment/exposure initiation and hence, 

minimize immortal time bias; secondly, at treatment 

initiation in its traditional role of a balancing tool to 

retain the comparability between the treatment/exposure 

groups. To our knowledge, the ETCR methodology is the 

first to adopt the propensity score specifically as a study 

design tool for resolving the problem of immortal time 

bias. Using simulated data, the new methodology is 

compared with two of the leading approaches in the 

literature, namely, the Landmark methodology and the 

most common form of the time-dependent Cox 

regression methodology, both of which involve 

assumptions that make them more susceptible to 

exposure misclassification bias.  

 

2. METHODS  

2.1 Notations 

We simulated a cohort of patients with cohort entry at 

time t0 and treatment initiation at time t1 for those who 

received the treatment of interest. We defined two 

treatment groups for comparisons: the “unexposed” as 

those who remained on standard care (also referred to as 

the “untreated”) and the “exposed” as those who 

received the treatment at t1  ≥  t0 (also referred to as the 

“treated”). The treatment status is denoted by the 

variable Z: Z=0 for the unexposed and Z=1 for the 

exposed and ours is not the first to adopt this 

classification for comparative assessment of the bias.
[31]

 

Indeed, studies involving the assessment of treatment 

effect between exposed/treated versus 

unexposed/untreated patients in retrospectively collected 

data are not uncommon; the literature suggests most 

observational studies on drug safety are based on such 

comparisons and they include virtually all single-arm 

trials that involve external controlled arms- a growing 

trend in drug research on rare diseases for regulatory 

submissions as all are based on this treatment strategy. In 

this strategy, the intention-to-treat framework effectively 

and accurately represents the real-life exposure status as 

observed- being the hallmark of the real-world evidence 

generation process, that makes it distinctively different 

from the controlled, randomized trial setting.  

 

2.2 Landmark (LA) Methodology 

In the Landmark approach, a predefined, common time 

point is fixed for all patients for the classification of 

treatment/exposure status. This time point is referred to 

as the landmark and is the start of follow-up.
[28,32-38]

 

Immortal time bias is assumed to be resolved by the 

approach since both the treatment determination point 

and start of follow-up are the same. However, exposure 

misclassification may occur since the exposed whose 

time of initiation is after the landmark time will be 

considered as “unexposed. For example, if the landmark 

is set at 6 months from cohort entry, then those who 

initiated treatment after 6 months will be classified as 

unexposed. The approach is therefore suitable for 

settings where the interest is in whether treatment is 

started within the landmark period.  The median waiting 

time from the simulated data was assigned as the 

landmark time in our comparisons. 

 

2.3 Time-dependent Cox Regression (TDCR) 

Methodology  

The Time-dependent Cox regression (TDCR) approach 

is whereby Z is considered as a time-dependent binary 

variable for treatment initiation. In common with most 

applications of the approach, we have used the step-

function definition of Z such that Z=0 from cohort entry 

until treatment initiation when it changes to Z=1.
[39-41]

 

This, being the most common and simplest form of 

application of the TDCR approach- is one-directional in 

the sense that it does not allow for patients who switched 

to the treated group upon initiating treatment, to switch 

back to the untreated group when they stop the treatment. 

 

2.4 The Entry-Time Comparability Retention 

(ETCR) Methodology  

The approach assumes that the most eligible unexposed 

comparators to each exposed patient at treatment 

initiation (t1) are those who were comparable at cohort 

entry (t0), based on propensity scores. The method, 
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which involves three steps, relies on the PS to identify the suitable comparators, as illustrated in Figure 1. 

 

 
Figure 1: The Entry-Time Comparability Retention Method. 

 

Abbreviations: IPTW= inverse probability treatment 

weighting; PS0= propensity score at t0; PS1= propensity 

score at t1; PSM= propensity score matching; t0=cohort 

entry time; t1= treatment initiation time; tc= censoring 

time; td= event time. 

 

Step 1: Deriving PS0 

At cohort entry (t0), derive the first set of propensity 

scores (PS0) from the covariates. Create blocks of 

exposed and comparable unexposed patients (1:n). Select 

unexposed patients with a PS0 within a defined caliper of 

the exposed patient‟s PS0. 

 

Step 2: Aligning Follow-up Start 

Assign the exposed patient‟s treatment initiation time as 

the common start date for follow-up in each block. 

Retain unexposed patients with a PS0 within the caliper, 

provided they haven‟t experienced the outcome or been 

lost to follow-up before the treatment initiation time (t1). 

 

Step 3: Deriving PS1 

At treatment initiation (t1), derive the second set of 

propensity scores (PS1) based on updated covariate 

values for all patients retained after steps 1 and 2. 

 

We used matching without replacement in our 

illustrations, though the design also supports matching 

with replacement. This approach is similar to blocking 

methods used for treated patients, where follow-up start 

dates for unexposed patients are randomly selected 

within six months of the treatment initiation date.
[42]

 In 

the ETCR method, immortal time bias is addressed by 

using t1 as the start of follow-up for both exposed and 

unexposed patients. Confounding is then managed using 

the second set of propensity scores (PS1) for treatment 

effect assessment. 

 

2.5 Rationale of the ETCR Methodology  
The usefulness of any observational study relies heavily 

on the extent to which the study data accurately captures 

and represents the experiences of the study patients in 

real-life clinical practice. Thus, for those involving 

retrospectively collected data, their usefulness would 

depend on the extent to which such data accurately 

represent what has been observed, for the generation of 

real-world evidence. In other words, the definition of 

treatment status that is based on what has been observed 

will not by itself, introduce selection bias, especially if 

the purpose is to avoid the risk of exposure 

misclassification, as it is the situation with the counter-

matched nested case-control design. The risk of exposure 

misclassification ought to be of greater concern to us 

than that of immortal time bias especially when using 

such data to assess drug safety. According to the 

literature, we do indeed continue to pay greater attention 

to this particular risk when conducting observational 

studies for regulatory submissions, where we are 

required to ascertain the validity of the assumptions 

associated with the statistical techniques we utilize.  

 

For the ETCR approach, we consider the patients who 

are not exposed to the specific drug of interest as those 

who remained on standard care (SC) and define PS0 as 

the propensity of being exposed (i.e. treated) at cohort 

entry. Thus, the PS0 is an observation-based statistical 

“construct” used only for the creation of blocks of 
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patients who are comparable at the start of the study. In 

other words, PS0 serves only as a design tool and it is not 

involved in the analytical process for the assessment of 

treatment effect for which the PS1 is used to compare the 

effects between the treated patients and those on SC (i.e. 

unexposed) without immortal time bias. Applied to 

retrospective data, with x=0 as unexposed and x=1 as 

exposed, both p(x=0) and p(x=1) are defined over the 

same observation period for the PS0, such as to 

accurately ascertain the status of each patient and hence, 

minimize the risk of exposure misclassification. In 

addition, both p(x=1) and p(x=0) are based on the same 

classification period for the PS1, and the subsequent 

treatment assessment process does not rely on the 

intention-to-treat assumption, which may not accurately 

reflect the setting in real-world clinical practice. This is 

particularly useful in the assessment of safety outcomes, 

where the so-called treatment-switching (i.e. time-

dependent Cox) approach, which is based on strong 

statistical assumptions about the risk profiles of the 

patients that are often ignored, may not be appropriate. 

The core assumption of causal inference in the context of 

treatment switching is sequential exchangeability, which 

is inherently difficult to satisfy in the context of a non-

random process, such as we find in routine clinical 

practice- involving data on prescription drugs that are 

based on treatment guidelines (i.e. not any random 

process).
[23]

 

 

2.6 Simulation Settings 

Two sets of simulations were performed using Weibull 

distributions to generate (1) time-to-treatment initiation 

data and (2) survival time data.
[43]

  

 

Time-to-treatment initiation: We assigned different 

values for time-to-treatment initiation (t1) and censoring 

time (tc) to generate datasets, involving 5 scenarios of 

median waiting time (1, 3, 6, 12 and 24 months) and 4 

scenarios of percentage of treated subjects (10, 30, 50 

and 75%), such that a subject was considered as exposed 

if t1≤tc and as unexposed if otherwise. 

 

Survival time: Using different shape parameters (K) for 

the Weibull distribution (i.e. failure rates of 0.75 for the 

setting of decreasing rate over time, 1.0 for constant rate 

over time and 1.5 for increasing rate over time), we 

simulated the time to event, involving 4 scenarios of 

median time-to-event (6, 9, 12 and 18 months) and 5 

scenarios of treatment effect (hazard ratios of 0.5, 0.75, 

1.0, 1.5 and 2.0), such that a subject was considered as a 

case (i.e. had the event) at time td if td ≤ tc and as 

censored if otherwise.  

 

Thus, each subject could be classified as any one of the 

following: exposed censored (t1,tc), exposed case (t1,td), 

unexposed censored (t0,tc) and unexposed case (t0,td)- the 

terms in parenthesis denoting the start and end of follow-

up times.  

 

Two additional covariates (age and x) were simulated for 

each subject from a Normal distribution at t0 and at t1 as 

follows: 

 

𝐴𝑔𝑒𝑡1
=  𝐴𝑔𝑒𝑡0

+ (𝑡1 − 𝑡0) 
 

𝑥𝑡1
= max⁡ 𝑥𝑡0

− 𝑐   𝑡1 − 𝑡0 ; 1  

 
 

Here, x was also a factor in the calculation of the scale 

parameter for the survival simulation time (st):  

𝜆𝑠𝑡 =  𝑥𝑡1

𝑛  
 

 

in order to obtain 4 scenarios of confounding - none, 

marginal, moderate and high confounding, whereby x 

differed between the treated vs untreated groups by 10, 

25 and 40% respectively. 

 

Waiting time bias: This was possible when the waiting 

time (t1-t0) was not accounted for in the definition of start 

of follow-up. 

 

3. STATISTICAL ANALYSIS 

We compared the results from the ETCR methodology 

with those from the LA and TDCR approaches with 

failure as endpoint and hazard ratio as the estimate of 

interest. Both the ETCR and LA methodologies involved 

the inverse probability treatment weights (IPTW) 

approach whereas the TDCR model with treatment group 

as a binary variable, included age and x as additional 

time-dependent covariates. For the ETCR methodology, 

PS0 was calculated using the greedy nearest neighbour 

matching method at a 1:n ratio with a calliper of 0.25.  

PS1 was used for the IPTW where average treatment 

effect (ATE) weights were calculated at  via a logistic 

regression model 

 

𝑍  1 =  𝐴𝑔𝑒𝑡1
+ 𝑥𝑡1

+ 𝐴𝑔𝑒𝑡1
∗ 𝑥𝑡1

 
 

 

The ATE weights for the exposed and unexposed 

subjects were calculated respectively as   
1

𝑝𝑗
 𝑎𝑛𝑑 

1

1 − 𝑝𝑗
 

 
 

with  as the propensity score for subject .   

 

We used the Cox proportional hazards (PH) models to 

estimate the Hazard ratios (HRs) for both the ETCR and 

LA methods. The performance of each method was 

assessed using the residual bias ( calculated for each 

scenario as follows 

𝜀𝑖 = log(𝐻𝑅𝑖
 ) − log⁡(𝐻𝑅𝑖) 
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In order to calculate the residual bias, we assumed that 

the true value of the HR for each scenario was the one 

determined at the time-to-event simulation stage before 

applying the time-to-treatment initiation delay (i.e. 

waiting time bias). As part of this assumption, all 

simulations included a minimum immortal time (i.e. 

median time-to-treatment initiation of 1 month). 

Consequently, the true value of the HR is inherently 

biased.  

 

To compare the effect of the adjustments proposed by the 

three methodologies (namely, the ETCR, LA and 

TDCR), we compared the residual bias of each with the 

unadjusted (crude HR) from the Cox model. The mean 

bias is also presented overall and for each scenario. The 

difference of the mean bias between each of the three 

compared methods and the crude (non-adjusted) one is 

presented overall and for the descending, stable and 

ascending failure rates simulations; 95% Confidence 

intervals (CI) were estimated using the percentile interval 

bootstrapping method resampling each result 5000 times. 

 

The analyses were conducted in SAS version 9.4 for 

Windows (SAS Institute, Inc, Cary, NC). 

 

4. RESULTS 
We generated N=4,800 datasets for the different 

scenarios, each with n=10,000 subjects.  

Table 1 shows the mean bias across all scenarios, with 

the ETCR yielding the lowest indexes in every 

comparison. In general, the ETCR was found to reduce 

the bias (vs. the CRUDE model) of more than 27% (-

0.276) with a residual mean bias across all scenarios of 

0.141, that is even lower (0.100) when the simulated 

time-to-event failure rate is stable.  The ETCR overall 

mean bias was followed by the LA (0.276), the TDCR 

(0.325) and the CRUDE (0.417).  

 

Table 1: Overall Results by Approach. 

Approach Failure rate n Mean Bias (Diff) Bootstrap 95% CI 

ETCR Overall 4800 0.141 (-0.276) 0.097-0.172 

 Stable (k=1) 1600 0.100 (-0.287) 0.095-0.105 

 
Decreasing (k=0.75) 

Increasing (k=1.5) 

1600 

1600 

0.167 (-0.140) 

0.155 (-0.402) 

0.161-0.174 

0.150-0.160 

LA Overall 4800 0.276 (-0.141) 0.250-0.311 

 Stable (k=1) 1600 0.270 (-0.117) 0.257-0.283 

 
Decreasing (k=0.75) 

Increasing (k=1.5) 

1600 

1600 

0.302 (-0.005) 

0.257 (-0.300) 

0.289-0.315 

0.246-0.269 

TDCR Overall 4800 0.325 (-0.092) 0.294-0.365 

 Stable (k=1) 1600 0.303 (-0.084) 0.289-0.317 

 
Decreasing (k=0.75) 

Increasing (k=1.5) 

1600 

1600 

0.316 (+0.009) 

0.356 (-0.201) 

0.302-0.330 

0.341-0.370 

CRUDE Overall 4800 0.417 (ref.) 0.301-0.570 

 Stable (k=1) 1600 0.387 (ref.) 0.377-0.398 

 
Decreasing (k=0.75) 

Increasing (k=1.5) 

1600 

1600 

0.307 (ref.) 

0.557 (ref.) 

0.298-0.315 

0.539-0.576 

 

The consistency of the performance of the ETCR 

methodology in comparison with the other approaches 

across all the scenarios is visibly demonstrated by the 

scatter plots in Figure 2; the residual bias is more densely 

distributed towards the lowest values and with a much 

lower variation when compared to the two other 

approaches. 

 

 
Figure 2: Bias Clouds. 
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Each point on the plot represents a different simulation, 

with the vertical axis showing the magnitude of residual 

bias. The plot helps identify the overall distribution of 

bias across the tested simulation scenarios using the three 

different methodologies (ETCR, LA, and TDCR). 

 

The pattern of consistency in its comparative advantage 

over the others is similarly illustrated in the following 

two scenarios:  

Figure 3 shows that the larger the median waiting time, 

the larger the residual bias, except for the TDCR 

approach, where the reverse is the case. However, the 

impact is most marginal with the ETCR methodology 

with mean bias ranging from 0.113 to 0.177 when 

compared with those for the LA (i.e. 0.183 to 0.395) and 

the TDCR (i.e. 0.198 to 0.496).  

 

 
Figure 3: Mean Bias (95% CI) by Median Waiting Time to Treatment Initiation. 

 

This plot represents the average residual bias across 

different scenarios of median waiting time, showing any 

changes in bias and trends based on updates to the 

simulated condition (i.e., median waiting time). The 

residual bias and corresponding 95% CIs are shown on 

the vertical axis. 

Figure 4 indicates that the methods that use the IPTW 

(ETCR and LA) are less sensitive to higher levels of 

confounding- consistently yielding the similar bias 

levels, the levels increase with increasing confounding 

levels for the TDCR method.  

 

 
Figure 4: Mean Bias (95% CI) by Confounding Level. 
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This plot represents the average residual bias across 

different scenarios of confounding level, showing any 

changes in bias and trends based on updates to the 

simulated condition (i.e., confounding level). The 

residual bias and corresponding 95% CIs are shown on 

the vertical axis. 

 

According to Figure 5, the higher the percentage of 

treated subjects, the larger the residual bias. However, 

the ETCR methodology demonstrates lower sensitivity 

with a smaller difference between the highest and lowest 

mean residual bias values of 0.059. In comparison, the 

LA and TDCR methodologies reported higher 

differences of 0.275 and 0.384, respectively. 

 

 
Figure 5: Mean Bias (95% CI) by Treatment Effect (Hazard Ratio). 

 

This plot represents the average residual bias across 

different scenarios of treatment effect, showing any 

changes in bias and trends based on updates to the 

simulated condition (i.e., treatment effect). The residual 

bias and corresponding 95% CIs are shown on the 

vertical axis. 

Other illustrations of the comparative advantages of the 

ETCR over the two alternative methods at different (i.e. 

varying) failure rate, median time-to-event, and 

treatment effect are provided as Figures 6-8. 

 

 
Figure 6: Mean Bias (95% CI) by Weibull Failure Rate. 

 

Abbreviations: CI = confidence interval; ETCR = entry-

time comparability retention; LA = landmark; TDCR = 

time-dependent Cox regression. 

 

This plot represents the consistency of the superiority of 

the ETCR methodology over the others regardless of 

whether the underlying event rate is constant or not. 
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Figure 7: Mean Bias (95% CI) by Median Time to Even. 

 

Abbreviations: CI = confidence interval; ETCR = entry-

time comparability retention; LA = landmark; TDCR = 

time-dependent Cox regression. 

 

This plot indicates a trend of marginally decreasing bias 

as the median time-to-event increases, except for the 

TDCR approach for which a reversed pattern is 

observed. The impact remains most minimal for the 

ETCR methodology. 

 

 
Figure 8: Mean Bias (95% CI) by Treatment Effect (Hazard Ratio). 

 

Abbreviations: CI = confidence interval; ETCR = entry-

time comparability retention; LA = landmark; TDCR = 

time-dependent Co. 

 

This plot indicates the ETCR approach as consistently 

resulting in the lowest residual bias across the five 

treatment effect scenarios; each approach revealing a 

bathtub-like pattern that reflects the combined effect of 

varying forms of the Weibull distribution (i.e. 

decreasing, constant and increasing failure rates) and the 

varying hazard ratios we employed to generate the data. 

 

5. DISCUSSION 

Immortal time bias arises when the period prior to 

treatment initiation by a patient is either mishandled or 

ignored in the assessment of treatment effect in a setting 

where some patients are not treated. Waiting time bias, 

which usually arises from a random process such as a 

waiting list, is a subset of this bias. Indeed, appropriate 
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classification of the bias is essential for selecting an 

appropriate analytical solution to the problem, 

particularly because each potential solution usually 

involves its own set of assumptions. For example, the 

time-dependent Cox regression models, which 

collectively constitute the most appealing methodology 

for addressing this bias, are valid only if the condition 

that the change of treatment status be independent of the 

patient‟s risk profile can be realistically satisfied.
[2,44-45]

 

Thus, in settings where the change in risk profile is the 

reason for treatment initiation, as is often the situation in 

routine clinical practice, it may not be appropriate to 

assign the accrued persons-time for the immortal period 

to the untreated (unexposed) group, as has been 

suggested and subsequently criticized elsewhere.
[1-2,44,46-

47]
  

 

The pitfalls of the misuse of the time-dependent Cox 

models and the “events per person-time” statistics within 

this context, have already been reported elsewhere.
[2,44-

45,48]
 Indeed, one of the major shortcomings of these 

models in the handling of immortal time bias is the 

inherent assumption that the delay in treatment initiation 

(i.e. intervention) automatically makes it appropriate to 

consider the treatment effect as time-dependent (i.e. as 

varying over time). The impact of the delay in treatment 

initiation on treatment effectiveness or safety cannot be 

so readily accounted for by such assumption-laden 

statistical models. In other words, in the real-world 

evidence generation space, assumptions of time-

dependent treatment effects are not so easily 

ascertainable or demonstrable as valid. Our illustrations 

are based on the most simplistic, most common version 

of the time-dependent Cox regression models. 

 

In its February 2023 guidance for industry 

“considerations for the design and conduct of externally 

controlled trials for Drug and Biological Products”, the 

FDA acknowledges the problem of immortal time bias as 

particularly challenging for situations in which “no 

treatment” is the treatment strategy for the external 

control arm.
[49]

 Indeed, most comparative observational 

studies involve a similar strategy- namely, of assessing 

the effect of the treatment of interest between the patients 

who were treated (received the intervention) and those 

who were not treated (did not receive the intervention) 

and we can include most of the retrospective chart 

reviews we conduct in this category. There is therefore 

nothing wrong with the “no treatment” strategy itself. In 

other words, any difficulty we encounter with the 

analysis of data that involved the “no treatment” strategy 

is not because one of the groups involved patients who 

were never treated; we need not be unduly concerned 

about this reality in our definition of the treatment groups 

if such is based on the exposure status as observed. The 

problem of exposure misclassification should not be 

sacrificed to address that of immortal time. 

 

Understanding the target population of our estimand is 

crucial for the interpretation of the study findings. The 

ETCR facilitates comparative analysis of patients with 

the same start of follow-up, based on the actual immortal 

time. This differentiates it from the LA estimand, where 

patient survival until a predetermined landmark time is a 

requisite, irrespective of treatment status, as that is only 

determined at the landmark time. The ETCR estimand is 

also different from that of the TDCR, wherein the target 

population includes all patients in the cohort and each is 

classified as either unexposed or exposed during follow-

up, based on whether or not the patient has initiated 

treatment at each particular time of interest. Thus, it is 

easy to understand why the TDCR approach will not be 

feasible and the reason the Landmark approach may be 

problematic in trials with externally controlled arms that 

involve “no treatment” as the treatment strategy for the 

external control arm. 

 

Another key aspect to the interpretation of the study 

findings is the appropriateness of the analytical approach 

within the context of the intention-to-treat assumption, 

which is inherent in the analysis, but is more suitable for 

randomized clinical trials. For example, the Landmark 

approach, which involves a fixed cut-off time window 

and invokes an intention-to-treat assumption, may not be 

appropriate in certain observational studies, particularly 

those about drug safety, because of the more important 

problem of exposure misclassification.
[50]

 Since immortal 

time is only one among many sources of bias in 

observational studies, it is imperative that any effective 

solution to the problem also facilitates comparability 

between the treatment groups.
[2]

 In other words, the best 

approach should result in the maximum possible 

reduction of the different sources of bias. 

 

The third key aspect within the intention-to-treat 

framework is the use of the time-dependent Cox 

regression models with treatment effect as time-varying, 

whereby the proportionality assumption is by default, 

considered as necessarily valid. The literature suggests 

this assumption may not be valid if treatment effect is 

time varying.
[23]

 Indeed, where we wish to handle 

exposure/treatment as a time-dependent/time-varying 

factor in our observational study, especially in our 

assessment of the effects of prescription drugs, statistical 

theory demands that we first demonstrate the underlying 

risk of the event of interest is constant over time, with 

treatment having a time-varying multiplicative effect on 

the risk. This is because failure of the proportionality 

assumption could have implications on our interpretation 

of the estimated treatment effect from such models. 

Indeed, there is evidence that where patients initiate 

treatment for clinical reason(s), the intention-to-treat 

(ITT) analysis would generally underestimate the true 

treatment effect, especially with such models.
[50] 

 

In this paper, the ETCR methodology is proposed as a 

new approach for addressing immortal time bias in 

observational studies without any additional assumption. 

It is essentially a design tool that uses two sets of 

propensity scores, firstly as a tool at cohort entry for 
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identifying the unexposed patients (i.e. on standard care) 

that are eligible for assignment of the same start of 

follow-up time with their comparable exposed patients 

and secondly, in its traditional role as a balancing tool to 

facilitate comparability between the treatment groups, 

based on the updated patient characteristics and clinical 

history at treatment initiation; in the process, we are able 

to minimize the problem of immortal time bias and also 

minimize those biases associated with confounding. The 

ETCR therefore allows for the use of any of the current 

analytical methods with the second set of propensity 

scores, such as matching and weighting. The results from 

our analysis of the simulated data for different scenarios, 

in comparison with the Landmark and time-dependent 

Cox methodologies, consistently indicate the new 

approach as the most effective in terms of residual bias. 

The results also confirmed the problem of exposure 

misclassification associated with the Landmark approach 

as well as that of over-adjustment associated with the 

time-dependent Cox method for addressing immortal 

time bias and the ETCR methodology as the least 

sensitive to the different simulated scenarios. The new 

methodology is distinctively different from the 

prescription time-distribution matching (PTDM) 

approach, which is based on random sampling of the 

unexposed subjects, and which has been demonstrated 

elsewhere as possibly inferior to the time-dependent Cox 

method.
[14]

 It is also different from the method of 

matching with propensity scores derived with time-

dependent covariates as well as those that utilized the 

time-dependent Cox models to create time-dependent 

propensity scores.
[51-54]

 

 

Our paper follows a common practice of using simulated 

data to compare a new method for handling immortal 

time bias with the time-dependent Cox regression 

(TDCR) approach. In the process, we are mindful of the 

literature which suggests the assumptions for appropriate 

applications of the time-dependent Cox models are 

unlikely to be valid in the setting of prescription 

therapies, where treatment decisions are usually based on 

treatment guidelines, which inform or ought to inform 

the clinician‟s assessment of the risk.
[23,44-45,50]

 Indeed, 

evidence from clinical practice suggests there are several 

settings where longer waiting times may be associated 

with elevation of the risk of interest.
[55-57]

 In other words, 

the fundamental requirement of the time-dependent Cox 

models, which is assumed when used on such data- 

namely, that change of treatment status should be 

independent of the risk of the outcome of interest (i.e. the 

underlying risk is unchanged at the time of treatment 

initiation) is unlikely to be realistic in the setting of the 

intention-to-treat framework of routine clinical practice. 

Similarly, with the time-dependent Cox models, the 

proportionality assumption which is vital in our 

assessment and interpretation of treatment effect may not 

necessary be valid. Our criticism of the use of time-

dependent Cox models for immortal time bias is 

restricted to those that consider the delay in treatment 

initiation as necessarily making treatment a time-

dependent variable. Thus, we have nothing against those 

that are used for the handling of time-dependent 

covariates.
[58]

 We can think of no rationale for the 

assumption of a time-varying effect for the 

treatment/intervention primarily because of delay in its 

initiation by the physician. Indeed, the problems 

associated with the adoption of untested assumptions to 

address the problem of immortal time bias as described, 

similarly apply to those approaches that involve the 

sequential Cox and marginal structural models.
[59-64]

 

Others in this category include the version of the “target 

trial emulation” approach that involved multiple 

emulated trials over the study follow-up period.
[65]

 The 

major limitation of the latter approach is the inherent 

assumption that the risk profiles of the patients involved 

in the multiple emulated trials- up to their treatment 

initiation dates, would remain either unchanging as if 

each such patient is a clone of itself, with the same risk 

profile at each of these trials or any changes in the risk 

profiles can be adequately accounted for with a suitable 

statistical model. In other words, the multiple emulated 

trials approach is based on the statistical principle of 

treatment switching and as such, it is susceptible to the 

problems associated with inappropriate adoption of that 

statistical principle- namely, that the reason for switching 

should be independent of the risk of the event of interest. 

In other words, it assumes that in routine clinical 

practice, the reason for initiation of treatment by the 

physician is unconnected with the guidelines that inform 

appropriate prescribing of the treatment, as if the 

decision to initiate treatment is not informed by any 

observed change(s) or even concern about possible 

change(s) in the patient‟s risk profile, but by something 

else that is quantifiable. Even if we accept that we can 

use a suitable statistical technique to adequately account 

for the repeated use of individuals, this assumption- 

which translates to a random process as responsible for 

the reason to initiate treatment- is unlikely to be tenable 

in the real-world setting of clinical practice involving 

prescription drugs because of the realistic possibility of 

time-varying (1) risk profiles, (2) unmeasured 

confounding and of course, (3) confounding by 

indication, to list but three. Furthermore, these models 

are generally being applied within the intention-to-treat 

principle, to address the problem of immortal time bias, 

whilst ignoring many of the problems associated with 

routine clinical practice- namely issues resulting from 

patient noncompliance, such as treatment discontinuation 

and ad hoc consumption, to list but two.  

 

Our position is that the assumptions we adopt to address 

the problem of immortal time bias in real-world data, 

especially those about prescription drugs, should also 

take cognisant of the other sources of bias, some of 

which may be more impactful- such as exposure 

misclassification, confounding by indication and 

channelling bias, to name but only three. We are 

suggesting the issues associated with the use of 

unproven/untested assumptions are particularly relevant 

to the realm of assessment of the effectiveness and safety 



 Kiri et al.                                                                          International Journal of Modern Pharmaceutical Research 

Volume 9, Issue 3. 2025                      │                   ISO 9001:2015 Certified Journal                     │                      21 

of clinical interventions in real-world evidence 

generation. In this regard, the ETCR approach is 

particularly suitable for such studies because of the need 

to avoid or minimize the critical problems of exposure 

misclassification and confounding. It is designed to 

address the problem associated with arbitrary or 

unproven assumptions in the definition of an index date. 

The literature suggests none of the approaches involving 

sophisticated statistical models and designs, which have 

been proposed for addressing the problem of immortal 

time bias have been utilized in the generation of evidence 

for regulatory submission. We are not surprised! The 

difficulty with establishing the appropriateness and 

validity of the assumptions associated with these 

methodologies may account for the lack of their 

application in the regulatory space. Indeed, the much 

simple nested-case control design, with its inherent time-

dependent nature is generally preferred in such settings 

even by some of the chief proponents of the use of the 

TDCR approach for addressing immortal time bias.
[66-72]

 

 

Our experience suggests most observational treatment 

safety and effectiveness studies are based on the “no 

treatment” strategy- most are based on either single 

product registries or chart reviews on patients exposed to 

the treatment of interest. The problem of a suitable index 

date for patients either on standard care or without 

treatment may account for some of the reasons for the 

dominance of single-arm (i.e. single product) 

observational studies of the descriptive type. The 

simplicity and easy of application of the ETCR 

methodology ought to make it the method of choice for 

addressing immortal time bias in such studies. Indeed, 

we expect the new approach to enhance the value of not 

only real-word data in the design and conduct of 

externally controlled trials, but also facilitate enhanced 

utility of disease registries in general, and product 

registries in particular, for the conduct of comparative 

post-authorization safety studies, by the involvement of 

external and/or internal comparator groups with “no 

treatment” as the treatment strategy. 

 

Matching is an inherently inefficient, limiting method 

and more so for application in a rare disease- a limitation 

which may also apply to 1:n greedy matching on the first 

set of propensity scores to construct the blocks of 

exposed and unexposed patients. Another limitation of 

the ETCR is the problem of unmeasured confounding 

which is likely in the absence of data on any key patient 

characteristic because of its reliance on propensity scores 

derived from observed/measured characteristics. We also 

acknowledge as a limitation, the assumption that the 

updated data on the relevant covariates obtained at the 

time of treatment initiation will be sufficiently reliable 

between the comparative groups, since information 

derived at treatment initiation are likely to be more up to 

date for the treated (exposed) patients than for their 

corresponding untreated (unexposed) counterparts. 

Nevertheless, it is reasonable to assume in the derivation 

of the second set of propensity scores, that the values 

obtained at cohort entry on the unexposed patient may 

remain valid until they are updated in the patient‟s 

subsequent records prior to or at the start of follow-up.  

We acknowledge that like the ETCR approach, the 

Landmark method is simple to implement, and its results 

are easy to describe and interpret. Indeed, the approach 

may be more suitable than the ETCR for settings where 

treatment is known to have started within a specific time-

period from cohort entry
[50,73-74]

 or where a suitable 

threshold for exposure definition can be defined.
[67-68]

 

We also acknowledge that there may be settings where 

the assumptions associated with the use of the time-

dependent Cox regression approach may be realistic, 

such as for data from surgical interventions, including 

organ transplantation that are based on waiting lists. 

Indeed, the TDCR may be more effective than the ETCR 

for addressing the problem of immortal time bias in such 

settings, including vaccination programs where the drug 

is administered to every eligible, consenting candidate on 

a waiting list. However, in certain settings where the 

TDCR can be utilized appropriately, we may also need to 

take into account, some other possible implications of the 

time-dependent treatment effect. For example, inclusion 

of a separate parameter in the TDCR model to control for 

possible transient effect on the risk of interest by the 

initiation of treatment has been proposed for some 

settings.
[23,75]

 

 

It is noteworthy that the problem of confounding can be 

more impactful than that of immortal time in many 

observational studies, and hence the need to validate the 

assumptions we introduce in our attempt at addressing 

the lesser problem. In this regard, the ETCR 

methodology offers a simplistic approach for handling 

both problems and although, we have used greedy 

matching at 1:n ratio in our illustrations, other propensity 

score-based matching or weighting methods can be used 

with the new method. The methodology is applicable to 

any clinical setting where patients may have to wait for 

the intervention of interest primarily for clinical reasons 

(e.g. compliance with clinical guidelines instead of non-

availability of treatment). Indeed, the increasing 

involvement of machine learning techniques along with 

their associated computational power in the derivation of 

propensity scores should make the ETCR methodology 

readily scalable to larger datasets and facilitate 

improvement in the handling of immortal time bias.
[76-82]

 

 

6. CONCLUSIONS 

Immortal time bias, which occurs when the period prior 

to treatment initiation is unaccounted for in the 

assessment of treatment effect, is common in 

observational studies. However, current methods for 

resolving the problem have their limitations and the most 

preferred approach is based on assumptions, which may 

not necessarily hold true in certain real-world settings, 

and more so in observational safety studies. A new, 

simple-and-easy-to-use approach called the Entry-time 

Comparability Retention (ETCR) method is proposed 

that involves using two sets of the propensity scores- 
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firstly, as a design tool for the creation of patient blocks, 

to handle the source of the immortal time such that the 

unexposed patients (i.e. those on standard care) who are 

comparable to each exposed patient at cohort entry can 

constitute the same block and can be assigned the same 

start of follow-up time as that of the treatment initiator, 

and secondly in its conventional role as a balancing tool, 

to retain comparability and address the problem of 

confounding. The ETCR methodology allows for the use 

of any suitable analytical approach such as matching or 

weighting with its second set of propensity scores. In 

other words, although the approach does not add 

anything new to any of the current analytical methods for 

handling the problems of confounding, it does avoid 

most of the limitations associated with the current 

approaches. The results from simulated data that reflect 

some of the different possible real-world settings 

associated with observational studies, support the ETCR 

methodology when applied with the Inverse Probability 

of Treatment Weighting approach as superior to two of 

the leading alternative methodologies in the current 

literature. Although the literature on immortal time bias 

supports our use of simulated data for comparative 

assessment of the performance of the different methods, 

we expect and strongly recommend the conduct of 

similar comparative assessments of these methods based 

on real-life data. 
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