

IJMPR 2021, 5(1), 82-89

International Journal of Modern Pharmaceutical Research

www.ijmpronline.com

EFFECT OF BIOFERTILIZERS ON SEEDLING GROWTH OF PADDY (*ORYZA SATIVA* L.) CV. PANVEL 3.

N. B. Pawar and N. S. Suryaawanshi²*

¹Department of Botany, Mahatma Phule A. S. C. College, Panvel, Dist Raigad M.S. India. 410206. ²Research Laboratory, Department of Botany, DSPM, S K. V. Pendhafkar College, of Art, Science and Commerce Dombivili €, Mumbai India. 421203.

Received on: 16/12/2020	ABSTRACT
Revised on: 06/01/2021	The present investigation was carried out in kharif season, during 2015 and 2016 at
Accepted on: 26/01/2021	research farm, 'Rayat Shikshan Sanstha's, M.P.A.S.C. College Panvel, District-Raigad
	(Maharashtra), India. To observed the effect of different biofertilizers on growth and
*Corresponding Author	yield parameters on Paddy (Oryza sativa L. cv. Jaya). The experimental farm was
N. S. Suryaawanshi	geographically situated at 18°, 59" 40' N latitude and 73°, 06' 50" E longitude at an
Research Laboratory,	altitude of 28 meters above mean sea level. The experiment was laid out in RBD replicated thrice with twelve treatments i.e. (T0) Control (without fertilizer), (T1)
Department of Botany,	Chemical fertilizer(19:19:19), (T2) Blue green algae,(T3) Azospirillum brasilense,
DSPM, S K. V. Pendhafkar	(T4) Bacillus megaterium, (T5)Trichoderma viride,(T6) Mycorrhizae, (T7)
College, of Art, Science and	<i>Pseudomonas aeruginosa</i> ,(T8)T2+T7,(T9)T2+ T6, (T10) T3+T4, and (T11)
Commerce Dombivili €,	T3+T4+T7. RDC fertilizer was applied in three splitted doses. The first dose,
Mumbai India. 421203.	consisting of 1/3 the normal dose, was applied before transplantation; the second 1/3 at the time of tillering; arid the last 1/3 at the panicle initiation phase. The study revealed
	the growth parameters like shoot length, root length, and dry matter production at
	various stages of growth in Paddy (Oryza sativa L.) cv. Jaya were favorably influenced
	by biofertilizers treatment. Overall results suggest that combine effect of Biofertilizers
	improves vegetative and reproductive growth of Paddy (Oryza sativa L. cv. Jaya)".
	KEYWORDS: Biofertilizers, Growth and yield parameters, Paddy (Oryza sativa L. cv. Jaya).

INTRODUCTION

Paddy (*Oryza sativa L.*) is most important stable food crop in the world and is grown under abroad range of environmental conditions.India is second largest producer and consumer of rice in the world after China. At national level, area under cultivation is 42.5 million hectares with the production of 152.6 million tones and average productivity is of 3.5 tones per hectares. At global level, paddy is cultivated under 158.4 million hactares area with annual production of around 697.2 million tones and average productivity of 2.85 tones per hectares (Sarvan et al,2016).

Fertilizers come in two types - they are either chemical or biofertilizers. Increasingly high inputs of chemical fertilizers during last 15decadess have not only left soils degraded, polluted and less productive but have also posed severe health and environmental hazards. Organic farming methods (such as the use of biofertilizers) would solve these issues and make the ecosystem healthier. Biofertilizers play a very significant role in improving soil fertility by fixing atmospheric nitrogen, both, in association with plant roots and without it, solubilise insoluble soil phosphates and produces plant growth

substances in the soil. They are in fact being promoted to harvest the naturally available, biological system of nutrient mobilization (Venkatashwarlu, 2008). The role and importance of biofertilizers in sustainable crop production has been reviewed by several authors (Biswas et al. 1985; Wani and Lee, 1995; Katyal et al. 1994).

Biofertilizers are becoming increasingly popular in many countries and for many crops. They are defined as products containing active or latent strains of soil microorganisms, either alone or with albae or fungi that increase plant availability and uptake of mineral nutrients (Vessey et al., 2006) 571-586. Bio-fertilizers containing beneficial bacteria and fungi improve soil chemical and biological characteristics, phosphate solutions and agricultural production (El- Habbasha et al., 2007; Yosefi et al., 2011). Microbiological fertilizers are environment friendly sustainable important to agricultural practices (Bloemberg et al., 2000).) The Biofertilizer includes mainly the nitrogen fixing, phosphate solubilizing and plant growth promoting microorganisms (Goel et al., 1999).

L

MATERIALS AND METHODS

Collection of seeds and raising seedlings

Paddy (*Oryza sativa* L. cv. JAYA) seeds were collected from the Kharland research station Panvel, Dist Raigad.Jaya is a medium duration high yielding variety of rice. It is recommended for both crop seasons. The variety is known for its greater yield potential. The grains are long and white with good cooking quality.

Transplanting of paddy seedlings:Twenty one days old paddy seedlings were transplanted at 20 cm x 15 cm spacing during both the seasons with five seedlingsper hill. Gap filling was carried out twelve DAT in order to ensure uniform plant population.

Experimental site

This investigation was carried out at research farm of RayatShikshanSanstha's MahatmaPhuleA.S.C.College, Panvel, Dist.Raigad (Maharashtra). The experimental farm is geographically situated at 18° , 59° 40' N latitude and 73°, 06' 50" E longitude at an altitude of 28meters above mean sea level.The experiment was conducted on the same site and layout during both the years. The study area is representative of the agro-ecological sub-region 19.3 coveringnorth Konkan coastal zone of Maharashtra (Sehgal *et. al.*, 1992), which comprises of Thane & Raigad districts.

Experimental details-				
Type of Soil	Garden clay-loamy			
Name of the Method:	Seed treatment			
No .of Replications	3			
No. of seeds sown	20			
Size of pot	1x1 m2			
Treatment details-				
Notation for treatment	Т			
ТО	Control			
T1	Azospirillum brasilense			
T2	Bacillus megaterium			
Т3	Azospirillum brasilense +Bacillus megaterium			
T4				

*

Collection of experimental data a) Growth parameters-

vi) Straw yield (q./ha.)- The weight of the straw harvested from the net area in each treatment was recorded after five days sun drying in the field and then converted onq/ha.

Statistical Analysis-Pooled data was used for analysis. Duncan's multiple range test (DMRT) was performed to determine the significant differenc.e between treatments (Gomez and Gomez, 1984).

Table 1: Effect of bio fertilizers on root length at various stages of growth in Paddy (Oryza sativa L.) variety,	
Jaya. (Pooled data of two yrs.).	

T	Root length (cm.)				
Treatments	30DAT	60 DAT	90 DAT	At harvesting	
T0- Control	3.916	7.332	8.393	10.08	
T1- Chemical fertilizer	6.15	8.855	9.828	11.985	
T2 - BGA	4.537	7.884	9.45	10.507	
T3- Azospirillum	4.933	10.166	11.971	12.039	
T4- Bacillus	4.809	10.431	11.9333	13.025	
T5- Trichoderma	4.439	9.072	10.487	12.078	
T6- Mycorrhizae	5.527	10.621	12.986	13.769	
T7- Pseudomonas	5.274	9.894	12.881	13.781	
T8- T2+ T7	6.129	11.863	14.186	15.099	
T9- T2+ T6	6.964	13.794	15.435	16.057	
T10- T3+T4	7.866	14.459	15.326	17.605	
T11- T3+T4+T7	7.989	16.033	16.433	17.959	
SE m ±	0.306	0.69	0.453	0.421	
CD at 0.05 %	0.866	1.951	1.281	1.189	
C.V.%	0.722	0.975	0.528	0.443	

Values are the Mean of three replicates.

I

L

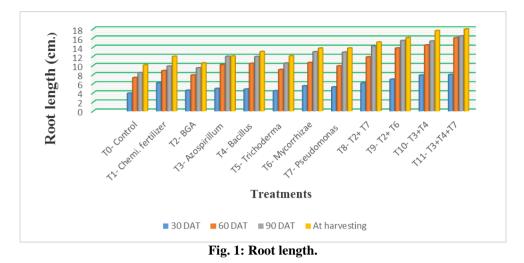


 Table 2: Effect of bio fertilizers on shoot lengthat various stages of growth in Paddy (Oryzasativa L.) variety,

 Jaya. (Pooled data of two yrs.).

T	Shoot length (cm.)				
Treatments	30DAT	60 DAT	90 DAT	At harvesting	
T0- Control	16.647	32.541	47.496	49.161	
T1- Chemical fertilizer	23.329	43.349	54.469	55.735	
T2 - BGA	17.728	36.971	49.192	52.693	
T3- Azospirillum	19.043	46.38	56.619	58.749	
T4- Bacillus	19.612	43.899	54.983	56.996	
T5- Trichoderma	18.334	34.902	52.956	54.226	
T6- Mycorrhizae	19.899	37.438	54.924	57.219	
T7- Pseudomonas	21.197	45.04	56.913	59.978	
T8- T2+ T7	23.173	47.023	58.369	61.773	
T9- T2+ T6	23.817	50.931	58.136	61.556	
T10- T3+T4	26.081	51.044	58.004	63.031	
T11- T3+T4+T7	26.911	53.884	60.314	63.635	
SE m ±	0.519	1.049	1.107	1.001	
CD at 0.05 %	1.469	2.967	3.132	2.833	
C.V.%	0.351	0.344	0.285	0.254	

Values are the Mean of three replicates.

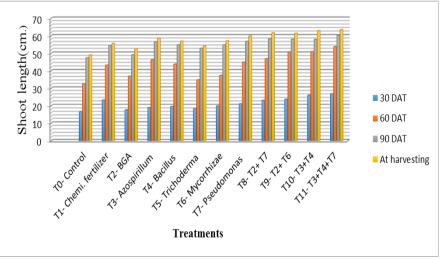


Fig. 2: Shoot length.

Tuestments	Dry matter production (gm./hill)				
Treatments	30DAT	60 DAT	90 DAT	At harvesting	
T0- Control	14.982	30.012	37.321	39.012	
T1- Chemical fertilizer	17.691	35.779	42.332	43.766	
T2- BGA	16.156	33.563	39.975	42.605	
T3- Azospirillum	16.675	32.001	40.6118	43.977	
T4- Bacillus	16.321	32.827	41.2637	43.292	
T5- Trichoderma	15.501	31.206	41.058	42.552	
T6- Mycorrhizae	18.277	37.306	46.728	49.828	
T7- Pseudomonas	17.442	33.899	44.319	45.986	
T8- T2+ T7	20.68	37.826	46.626	50.339	
T9- T2+ T6	20.732	39.286	48.994	53.328	
T10- T3+T4	20.937	40.433	51.143	53.641	
T11- T3+T4+T7	21.294	40.737	52.11	55.99	
SE m ±	0.457	0.621	0.668	0.684	
CD at 0.05 %	1.293	1.756	1.891	1.935	
C.V.%	0.367	0.263	0.215	0.206	

 Table 3: Effect of bio fertilizers on dry matter production at various stages of growth in Paddy (*Oryza sativa* L.) variety, Jaya.(Pooled data of two yrs.).

Values are the Mean of three replicates.

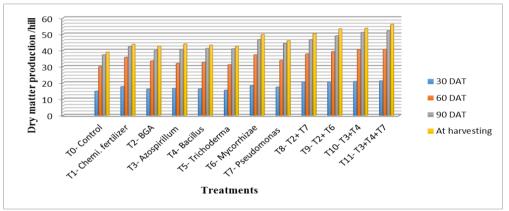


Fig. 3: Dry matter production.

Table 4a: Effect of different bio fertilizers on length of panicle, weight of panicle and number of spikelet's/panicle of Paddy (*Oryza sativa* L.) variety, Jaya. (Pooled data of two yrs.).

	Yield parameters				
Treatments	Length	Weight of panicle	No. of Spikelet's		
	of Panicle (cm.)	(gm.)	Per panicle		
T0- Control	20.344	2.191	10.836		
T1- Chemi. fertilizer	23.395	2.395	11.823		
T2-BGA	20.653	2.346	11.122		
T3- Azospirillum	21.215	2.357	10.926		
T4- Bacillus	22.238	2.435	11.218		
T5- Trichoderma	21.444	2.344	11.265		
T6- Mycorrhizae	23.601	2.541	12.343		
T7- Pseudomonas	24.208	2.476	12.775		
T8- T2+ T7	25.586	2.546	13.513		
T9- T2+ T6	26.331	2.922	14.401		
T10- T3+T4	26.461	3.114	14.992		
T11- T3+T4+T7	27.088	3.153	15.498		
SE m ±	0.293	0.09	0.296		
CD at 0.05 %	0.832	0.257	0.837		
C.V.%	0.183	0.511	0.334		

Values are the Mean of three replicates.

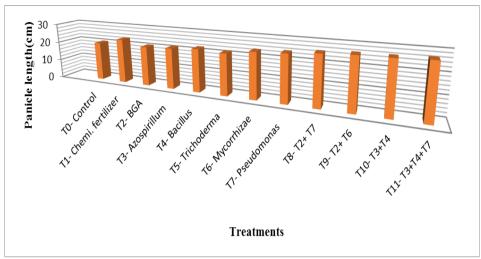


Fig. 4: Panicle length.

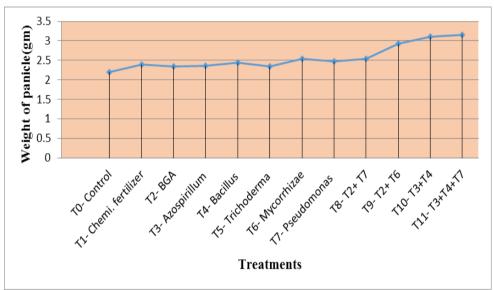


Fig. 5: Weight of Panicle.

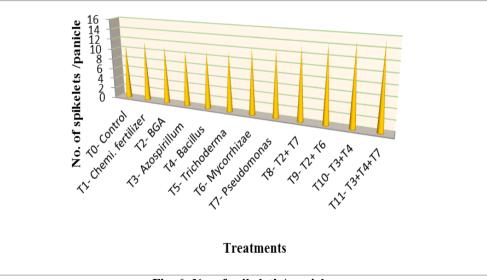


Fig. 6: No. of spikelet's/ panicle.

	Yield parameters				
Treatments	Wt. of 1000 Seeds(gm.)	Grain yield (q./ha.)	Straw yield (q./ha.)		
T0- Control	18.265	44.905	67.941		
T1- Chemi. fertilizer	23.113	57.291	74.648		
T2-BGA	23.007	54.819	74.078		
T3- Azospirillum	25.453	55.214	75.375		
T4- Bacillus	22.808	53.667	73.781		
T5- Trichoderma	21.527	52.385	72.908		
T6- Mycorrhizae	26.244	53.675	74.363		
T7- Pseudomonas	24.855	53.716	75.243		
T8- T2+ T7	25.771	58.524	76.921		
T9- T2+ T6	27.015	61.867	77.896		
T10- T3+T4	27.467	62.043	77.923		
T11- T3+T4+T7	27.973	62.685	78.715		
SE m ±	0.463	1.153	1.679		
CD at 0.05 %	1.301	3.261	4.726		
C.V.%	0.274	0.297	0.324		

Table 4b: Effect of different bio fertilizers on test weight, grain and straw yield of Paddy (Oryza sativa L.) variety, Jaya.(Pooled data of two yrs.).

Values are the Mean of three replicates.

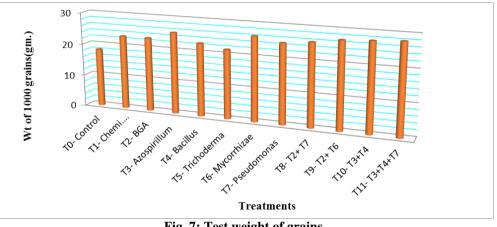


Fig. 7: Test weight of grains.

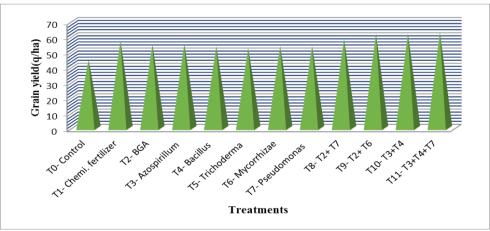


Fig. 8: Grain yield.

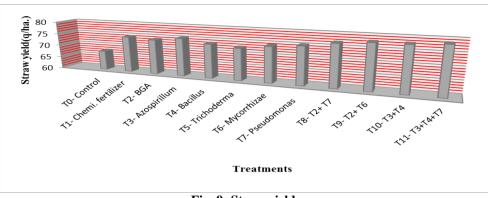


Fig. 9: Straw yield.

RESULTS AND DISCUSSION

Data on mean values of growth parameters pertaining to different treatments are presented in **Table 1 to -4.** The good results were observed in biofertilizer treated plants in all respects and the results suggested that the treatment of biofertilizers in single, dual and multiple combination enhance the growth of paddy plants when compared to chemical fertilizer treated plants and control. The results on yield attributes such as Panicle length, weight of panicle, no. of Spikelet'sperpanicle, wt. of 1000Seeds, Grain yield (q./ha.) and Straw yield(q./ha) showed a favorable influence during the entire study period (**Table 2**).

Combined application of Azospirillum brasilense +Bacillus megaterium +Pseudomonas aeruginosa recorded significantly higher growth parameters compared to single application. The results are in conformity with earlier reports (Nanda et al., 2016). Growth parameters viz. plant height, number of tillers hill-1 and dry matter production hill-1 were significantly affected by bio-fertilizers. Combined application of +Bacillus Azospirillum brasilense megaterium +*Pseudomonasaeruginosa* recorded significantly higher growth parameters compared to singleapplication. Theresults of the present experiment confirmed the findings of Murthy et al. (2015). Increase in yield components, grain andstraw yield might be due to higher photosynthetic activitybecause of increased leaf area index, which ultimatelypromoted dry matter production resulted in higher grain andstraw yield. These results confirmed the findings of Davariand Sharma (2010) and Singh et al. (2013).

CONCLUSIONS

It can be seen from the above data that all the treatments were significantly higher than each other. The treatments T8 (BGA+ pseudomonas Mycorrhizae), aeruginosa), T9(BGA+T10 (Azospirillus umbrasilense +Bacillus magisterium) and T11 (Azospirillus umbrasilense +Bacillus megaterium +Pseudomonas aeruginosa) was significantly higher than all other treatments in growth and yieldparameters. Based on these reports, it can be assumed that biofertilizers could offer an

opportunity for rice farmers to increase yields, productivity, and resource use efficiency.

ACKNOWLEDGMENTS

The author is thankful to Prin.DR. G. A. Thakur M.P.A.S.C. College, Panvel, and Principal Dr. Mahajan I/C Principal Pendharkar College, Dombivli thanks are due to Research Laboratory, K V Pendharkar College, Dombivli for providing laboratory Facilities.

REFERENCES

- Biswas, B. C., Yadav, D. S., and S. Maheshwari Bio-fertilizers in Indian Agriculture. FertilizerNews, 1985; 30(10): 20-28.
- Bloemberg G.V, Wijfijes A.H.M., Lamers G.E.M, Stuurman N and Lugtenberg BJJ Simulataneous imaging of Pesudomonasflourescens WCS, 2000; 3655.
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1984; 680.
- Goel A.K., Laura R.D.S, Pathak G, Anuradha G and GoelA. Use of bio-fertilizers: potential, constraints and future strategies review. International Journal of Tropical Agriculture, 1999; 17: 1–18.
- Davari, M. R., Sharma, S. N. Effect of different combinations of organic materials and biofertilizers on productivity, grain quality and economics in organic farming of basmati rice (Oryza sativa). Indian Journal of Aronomy, 2010; 55(4): 290–294.
- Dawari. R and Sharma. N. Effect of organic manures on basmati rice (Oryza sativa L) under organic forming of rice – wheat cropping system. Int., Journal of Agricultural and crop sciences, 2011; 3(3): 76-84.
- El-Habbasha SF, Hozayn M, Khalafallah MA Integration effect between phosphorus levels and biofertilizers on quality and quantity yield of faba bean (Viciafaba L.) in newly cultivated sandy soils. Research Journal of Agriculture and Biological Science, 2007; 3(6): 966-971.
- Katyal, J.C., Das, S.K., Korwar, G.R. and Osman. M. Technology for Mitigation stresses: Alternateland uses. Stressed Ecosystems and Sustainable Agriculture eds, 1994; 291-305.

l

- Murthy KMD, Rao AU, Vijay D, Sridhar TV. Effect of levels of nitrogen, phosphorus and potassium on performance of rice. Indian Journal of Agriculture Research, 2015; 49(1): 83-87.
- Nanda, G., Sravan, U.S., Singh, A. and Singh, S.P. Effect of NPK Levels and Bio-Organics on Growth, Yield and Economics of Basmati Rice (Oryza sativa L.) cv. HUBR 10-9. Environ. Ecol., 2016; 34: 1530-1534.
- 11. Sarvan, T., Jaiswal, H.K., Showkat, A.W. and Kumari, P. Heterosis for yield and yield attributes in rice (Oryza sativa L.). Journal of Applied and Natural Science, 2016; 8(2): 622-625.
- 12. Venkatashwarlu, B. Role of bio-fertilizers in organic farming:Organic farming in rain fed agriculture: Central institute for dry land agriculture, Hyderabad, 2006; 85-95.
- 13. Vessey, J.K. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil, 2003; 255: 571–586.