

International Journal of Modern Pharmaceutical Research

www.ijmpronline.com

A CRITICAL REVIEW ON ANALYTICAL METHODS FOR NEWLY APPROVED DRUGS: MIRABEGRON AND SOLIFENACIN SUCCINATE

Patel Jenisha*, Patel Grishma and Meshram Dhananjay

Department of Quality Assurance, Pioneer Pharmacy Degree College, Vadodara, Gujarat, India.

Received on: 09/02/2022	ABSTRACT
Revised on: 02/03/2022	A recently approved FDC of Mirabegron (25mg) and Solifenacin Succinate (5mg)
Accepted on: 23/03/2022	recommended to treat Over Active Bladder. Analytical methods are available for
	individual quantitation of Mirabegron (MB) and Solifenacin Succinate (SFS), but only
*Corresponding Author	one an effective and reliable analytical method reported for their combination. Thus,
Patel Jenisha	the objective for this literature survey was to gather information on various analytical
Department of Quality	instrumental methods used so far for the individual quantitation of Mirabegron and Solifenacin Succinate in various matrices. The reported methods are high performance
Assurance, Pioneer Pharmacy	liquid chromatography, hyphentaed techniques, spectroscopy and high performance
Degree College, Vadodara,	thin layer chromatography or thin layer chromatography for mirabegron and
Gujarat, India.	Solifenacin succinate respectively.
	KEYWORDS: Mirabegron, Solifenacin succinate, UV, RP-HPLC, Analytical Method.

INTRODUCTION

Mirabegron is a beta- 3 adrenergic agonist. The chemical name is 2-(2-amino-1,3-thiazol-4-yl)-N-[4-(2-[[(2R)-2-hydroxy-2-phenylethyl]amino]ethyl]phenyl]acetamide having emphrical formula $C_{21}H_{24}N_4O_2S$ and molecular weight 396.5 g/mol. The structural formula for mirabegron is.

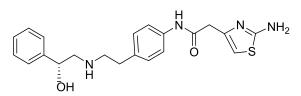


Figure 1: Structure of Mirabegron.

It has CAS number 223673-61-8. It has a (4.2) pKa1 and pKa2 (8.0). Mirabegron is a white powder. It is practically insoluble in water. It is soluble in methanol and dimethyl sulfoxide. It has $138-140^{\circ}$ C. it is classified as Class 3 biopharmaceutical classification system (high solubility and low premability.

Solifenacin Succinate is a anti-muscarinic selective M3 / anti-cholinergic drugs. The chemical name is [(3R)-1-azabicyclo[2.2.2]octan-3-yl] (1S)-1-phenyl-3,4-dihydro-1H-isoquinoline-2- carboxylate;butanedioic acid having emphrical formula $C_{23}H_{26}N_2O_2$; $C_4H_6O_4$ and molecular weight 480.6 g/ml. the structural formula for Solifenacin Succinate is:

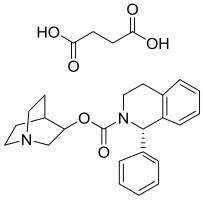


Figure 2: Structure of Solifenacin Succinate.

It has CAS number 242478-38-2. It has a pKa (8.0). Solifenacin Succinate (SFS) is a white powder or crystals. It is freely soluble in water. It is also soluble in methanol. It has $134-136^{\circ}$ C. It is classified as Class 1 biopharmaceutical classification system (high solubility and high permeability.

Mechanism of Action

Mirabegron

When urine accumulates in bladder, sympathetic nerve stimulation predominates. Non-adrenaline is released from nerve terminals, leads to beta adrenoreceptor activation in bladder muscles. Mirabegron is potent and selective agonist of beta-3 adrenergic receptors. The activation of beta-3 receptors relaxes detrusor smooth muscle during the storage phase of the urinary bladder fill-void cycle, which increases the bladder's storage capacity so increase the feelings of urgency and frequency.

Solifenacin Succinate

Solifenacin is a competitive muscarinic receptor antagonist. It has the highest affinity for M3, M1 and M2 muscarinic receptors. Most (80%) of the muscarinic receptors in the bladder are M2 while 20% are M3. Solifenacin antagonism of the M3 receptor prevents contraction of the detrusor muscle, while antagonism of M2 receptor may prevent contraction of smooth muscle in bladder.

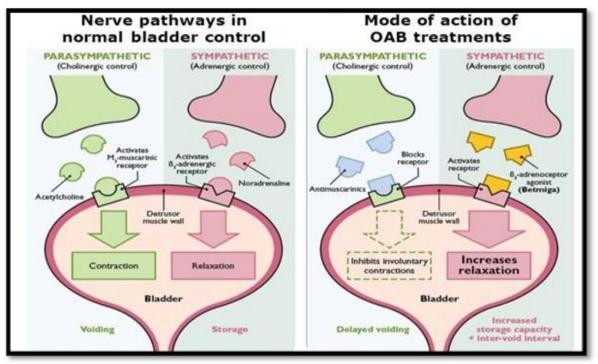


Figure 3: Site of action of drugs.

Pharmacokinetics

Mirabegron absolute bioavailability of orally administered mirabegron ranges from 29% at a dose of 25 mg to 35% at a dose of 50 mg. The T_{max} for the extended-release tablet and suspension formulations are approximately 3.5 hours, while the T_{max} for the granule formulation is 4-5 hours. Steady-state concentrations of mirabegron are achieved after approximately 7 days of once-daily administration. Volume of distribution (Vd) of 1670 L indicating extensive distribution. Mirabegron is approximately 71% protein-bound in plasma, primarily to albumin and alpha-1-acid glycoprotein. metabolic pathways and their resultant metabolites include amide glucuronidation hvdrolvsis M16. M17). (M5. O-glucuronide, N-glucuronide, (mirabegron Ncarbamoylglucuronide, M12), and secondary amine oxidation or dealkylation (M8, M9, M15), amongst others. The enzymes responsible for the oxidative metabolism of mirabegron are thought to be CYP3A4 and CYP2D6 hile the UDP-glucuronosyltransferases responsible for conjugation reactions have been identified as UGT2B7, UGT1A3, and UGT1A8. Other enzymes that may be involved in the metabolism of mirabegron include butylcholinesterase and possibly alcohol dehydrogenase. Renal elimination is achieved primarily via active tubular secretion with some contribution by glomerular filtration. elimination halflife of mirabegron approximately 50 hours in adults and elimination half-life is approximately 26-31 hours for

I

pediatric patients. Total plasma clearance following intravenous administration is approximately 57 L/h, with renal clearance accounting for roughly 25% at approximately 13 L/h. symptoms of overdose included palpitations and increased heart rate. Symptoms of chronic overdosage are similar in presentation and may also include a rise in systolic blood pressure.

Solifenacin Succinate is well absorbed in the duodenum, jejunum, and ileum but not the stomach. Absorption occurs via passive diffusion and so no transporters are involved. The mean oral bioavailability of solifenacin is 88%. The T_{max} of solifenacin is 3-8 hours with a C_{ss} of 32.3ng/mL for a 5mg oral dose and 62.9ng/mL for a 10mg oral dose. The volume of distribution of solifenacin is 600L. Solifenacin is 93-96% protein bound in plasma, mainly to alpha-1-acid glycoprotein. Metabolism of Solifenacin undergoes N-oxidation at the quinuclidin ring by cytochrome P450, though the exact enzymes are not revealed in the literature. The tetrahydroisoquinolone ring is 4R-hydroxylated by CYP3A4, CYP1A1, and CYP2D6. A 4R-hydroxy Noxide metabolite is also formed by CYP3A4. Finally, solifenacin can undergo direct glucuronidation. The elimination half life of solifenacin ranges from 33-85 hours. The clearance of solifenacin is 7-14L/h and a renal clearance of 0.67-1.51L/h. toxicity is Signs of overdose include severe anticholinergic effects, mental status changes, and decreased consciousness.

Pharmacodynamics

Mirabegron exerts its pharmacologic effects by forcing bladder smooth muscle to relax, thereby expanding its capacity and relieving urgency. Mirabegron does not appear to adversely affect the mean maximum flow rate or mean detrusor pressure at maximum flow rate in patients with lower urinary tract symptoms and bladder outlet obstruction (BOO), but should be used with in patients with BOO due to reports of significant urinary retention. Furthermore, mirabegron increases both blood pressure and heart rate in a dose-dependent manner and should therefore be used with caution in patients with severely uncontrolled hypertension or others for whom these increases may prove dangerous. Solifenacin antagonizes the M2 and M3 muscarinic receptors in the bladder to treat an overactive bladder. It has a long duration of action as it is usually taken once daily. Patients taking solifenacin should be aware of the risks of angioedema and anaphylaxis.

Pharmaceutical analysis profiles for Mirabegron and Solifenacin Succinate

Various analytical methods for the individual estimation of MB as well as SFS have been published in literature since 2010. Figure 4 shows a year wise paper published for both the drugs. Both drugs are non-offical in any of compendia.

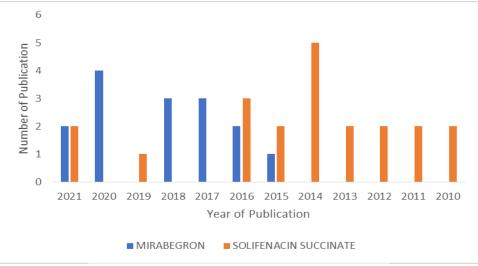


Figure 4: Year wise paper published of MB and SFS.

Non-compendial analytical methods

Non-compendial methods of analysis developed by various researches. These are spectroscopic, chromato-

graphic and hyphenated techniques represented graphically in figure 5.

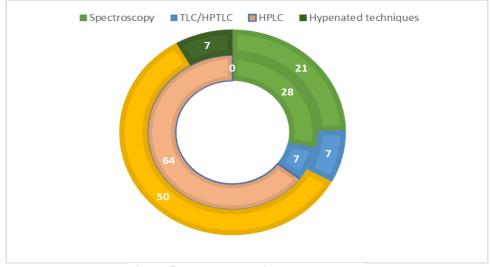


Figure 5: Non-compendial methods chart.

Spectroscopy methods

Spectroscopy is the interaction of matter and electromag- netic radiation that, as a function of

I

wavelength, provides a quantitative evaluation of the reflecting or transmitting properties of a material. These methods have many benefits, such as being simple, inexpensive and taking less time. They are the most widely used method by researchers and those who do not have access to advanced analytical tools. It was claimed that these methods were simple, quick, and relatively cost-effective.

There are many spectrophotometric methods developed so far for estimation of Mirabegron in various sample matrices including capsule formulation, bulk, dissolution medium and human plasma. The maximum UV-visible wavelength range was between 400-200nm. The solvent used for the detection of mirabegron was found according to solubility. There are many estimation of Solifenacin Succinate in bulk and tablet formulation.

Chromatographic methods

Chromatography is defined as separation of the components of a sample, in which the components are distributed between two phases, one of which is stationary phase while other is mobile phase.

The stationary phase may be solid or liquid supported on a solid or gel, and maybe packed in a column, spread as a layer or distributed as a film. The mobile phase may be gaseous or liquid.

It is categorized as thin-layer (TLC) chromatography, gel permeation chromatography, affinity chromatography, gas chromatography (GC), high- pressure liquid chromatography (HPLC), ion-exchange chromatography, ultra-high-performance liquid chromatography (UHPLC) etc.

Hypenated techniques

Hypenated techniques are a combination of chromatographic techniques with spectral techniques. For the estimation of drugs in biological fluids such as plasma and urine, various advanced chromato-graphic techniques such as GC-MS, LC-MS/MS, UHPLC have been used.

Table 1 · S	nectrosconic	methods for	the determination	of Mirabegron
Table 1. S	ρετα οδεορί	/ memous ioi	the utiter mination	or will abegion.

Sample matrix	Instrument model UV-Visible spectrophotometer	Solvent/Sol ution	Wavelength (nm)	LQ µg/ml	LD µg/ml	Author and year publication
Bulk and tablet	UV-Visible spectrophotometer	1N HCl	249	0.568	0.187	Badike S, et al. [2020]
Bulk and tablet	ElicoSL164 UV- Visible spectrophotometer	phosphate buffer pH 6.8.	245	7.67	23.24	Raveendra G, et al. [2017]
Bulk and tablet	UV-Visible spectrophotometer	Ethanol and water (1:9)	246 zero order 213 1 st derivative	0.80 & 2.43	0.47 & 1.42	Rani K, et al. [2017]
Bulk and tablet	ELICO Double beam SL 210 UV-VIS spectrophotometer	Methanol	251	0.029	0.00957	Sankar P, et al. [2016]

 Table 2: Spectroscopic methods for the determination of Solifenacin Succinate.

I

Sample matrix	Instrument model UV-Visible spectrophotometer	Solvent/Solution	Wavelength (nm)	LQ µg/ml	LD µg/ml	Author and year publication
Tablets	UV-visible spectrophotometer (LABINDIA)	Distilled water	250 265 nm First derivative	3.196	1.054	Srinivasaroa Y, et al. [2021]
Tablets	Shimadzu UV/VIS double beam spectrophotometer (model 1800)	Methanol	223	0.0999 2	0.9985	Saiyed N, et al. [2015]
Tablets	UV-visible spectrophotometer (Shimadzu, model 1800)	0.1N HCl	210	-	-	Kumar A, et al. [2015]
Tablets	UV-visible spectrophotometer (Shimadzu, model 1800)	100% TEA phosphate buffer (pH 2.5)	215	3.35	1.106	Kumar A, et al. [2014]
Tablets	UV-visible spectrophotometer (Shimadzu, model 1800)	Distilled water	220	0.9145 05	0.30178 6	Teja G, et al. [2013]
Tablets	Shimadzu UV 1700 UV-visible spectrophotometer	Bromo thymol blue (0.3% w/v) added to Chloroform	415.6 and 412	-	-	Singh L, et al. [2011]

Analytical system	Sample matrix	Column	Mobile Phase	Detection (nm)	Flow rate (ml/ min)	Retenti on time (min)	Author and publication year
RP HPLC	Bulk	Puratis C18 column (250 × 4.6mm, 5µm)	mobile phase A consisted, 20 Mm Ammonium acetate, Ph adjusted to 4.5 and mobile phase B consisted methanol	247	1.0	10.8	Bharathi T, et al. [2021]
RP HPLC	Bulk and tablets	C18, 250 ×4.6mm, 5µm	methanol water (70:30) at Ph 5.0 Adjusted to OPA	243	1.0	2.548	Suryawanshi R, et al. [2020]
HPLC- UV	Bulk and tablets	-	Acetonitrile: water (50/50 v/v) adjusted Ph 9 with 1 % TEA	247	1.0	3.93	Chhalotiya U, et al. [2020]
Agilent technologies- 1260 infinity system HPLC	Dosage form	eclipse XDB C18 column (4.6mm i.d × 250 nm, 5µm particle size)	methanol and acetonitrile (95: 5v/v)	251	1.0	5.813	Sankar P, et al. [2020]
RP HPLC	Tablets	Restek C18 column (250 × 4.6mm, 5µm)	buffer Ph: 7.0 potassium dihydrogen phosphate and acetonitrile (60:40 v/v)	249	1.0	4.576	Ramazani A, et al. [2018]
RP HPLC	Bulk and dosage form	THERMO, C18, 250X4.6mm, 5μm	0.1M KH2PO4 : Methanol (60:40)	248	1.0	3.684	Jyothsna M, et al. [2018]
RP HPLC	Tablets	Waters Acquity HSS T-3 C ₁₈ (100 × 2.1 mm, 1.7 μ m	Potassium di-hydrogen phosphate: acetone in the ratio (40:60 v/v) at Ph 6.0	243	1.0	2.574	Mounika B, et al. [2017]
RP HPLC	Tablets	EnableC18 G (250 × 4.6mm, 5µm) column	methanol: 1% OPA (70: 30v/v) at Ph 5	246	1.0	3.601	Spandana R, et al. [2016]
LC	Enantio meres	Chiralpak AY-H, column coated with amylose tris-(5- chloro-2- methylphenylcarbam ate) with influence of ethanol (30-45%)	mixture solution of n-hexane, ethanol, and diethyl amine (55: 45: 0.1, v/v/v)	254	1.0		Zou Q, et al. [2015]

|--|

Table 4: HPLC methods for the determination of Solifenacin Succinate.

Analytical system	Sample matrix	Column	Mobile Phase	Detect- ion (nm)	Flow rate (ml/min)	RT (min)	Author and publication year
RP-HPLC	Bulk and tablets	Sunfire C8 (4.6 ×150mm,5µm)	buffer: methanol: Acetonitrile (45: 45: 10v/v/v)	220	1.0	2.894	Tanuja A, et al. [2021]
RP-HPLC	API and tablets	Enable ODS reverse phase (250mm ×4.6 mm, 5µm)	Acetonitrile and water (80: 20v/v)	225	1.0	2.92	Kumar H, et al. [2019]
HPLC	Tablets	Capcell Pak C18, MG, (150 × 4.6mm, 5µm) column	A- (pH 6.6 phosphate buffer + 0.5% Triethylamine) B- (Milli-Q water 90% Acetonitrile (10: 90)).	225	0.9	10	Ganthi R, et al. [2016]
RP-HPLC	API	Xterra RP-18 (25cm×4.6mm i.d. 5µm)	0.05M pentane sulfonic acid sodium salt and acetonitrile (50:50 v/v)	200	1.0	4.1	Attia A, et al. [2016]
RP-HPLC	Tablets	EnableMake C18 G (250mm	Triethylammonium phosphate buffer pH 3:	210	1.0	3.5	Kumar A, et al. [2014]

		×4.6mm i.d., 5µm) column.	acetonitrile (30: 70v/v)				
RP-HPLC	Tablets	Inertsil ODS 3V C18 column (150mm ×4.6mm, 5µm)	potassium phosphate at pH 3.5 containing 0.1% triethylamine and methanol	220	1.5	5.12	Shaik R, et al. [2014]
LC	Tablets	C18 column	C18 column aqueous tetra butyl ammonium hydrogen sulphate (10mM): Acetonitrile (40: 60)		0.8	3.071	Annapurna M, et al. [2014]
HPLC	API	RP-18 (150mm × 4.6mm, 5µm)	0.01M phosphate bufferpH 3.5 with orthophosphoric acid (88%) and second mobile phase B contains mixture of acetonitrile and water (90: 10 v/v)	220	1.0	-	Rambabu C et al. [2013]
RP-HPLC	Bulk and Tablets	eclipse XBD-C18 (4.6 mm × 150mm, 5μm)	CAN: 20mM sodium phosphate buffer (0.2% TEA) (30:70)	225	1.0	10.95	Israel D, et al. [2013]
RP-HPLC	Bulk and Tablets	Xterra C18 (150 ×4.6mm, packed with 5µm)	Acetonitrile: Phosphate buffer (50: 50v/v)	210	1.0	2.4	Raul S, et al. [2012]
RP-HPLC	Bulk and tablets	OysterBDS C8 (250mm ×4.6mm i.d., 5µm)	10mM ammonium formate buffer: acetonitrile: methanol (52.5: 37.5:5.10, v/v/v)	210	0.7	13.8	Rajput S, et al. [2012]
HPLC	Bulk and tablets	Hypersil C8(250mm ×4.6mm i.d., 5µm)	10mM potassium dihydrogen phosphate with 0.1%v/v TEA in Milli-Q water pH 3: Acetonitrile (60: 40)	210	1.0	7.8	Vasanthraju S, et al. [2011]
HPLC	SFS in Rat plasma	TSK gel ODS- 80Ts (5µm, 150mm ×2.0 mm i.d)	0.1M phosphate buffer: acetonitrile (71: 29v/v)	220	0.2	7.3	Yanagihara T, et al. [2007]
UFLC	API	Simpak XR-ODS column	10mM buffer potassium dihydrogen orthophosphate in water the pH adjusted by using TEA		0.5		Saipriya P, et al. [2010]

Table 5: TLC (Thin layer chromatography) or HPTLC (High performance liquid chromatography) methods for Mirabegron.

Sample matrix	Stationary Phase	Mobile Phase	Wavelength (nm)	Author and publication year
Bulk and	Aluminium	methanol: acetonitrile:		
Tablets	Plates pre-coated with	triethylamine (4: 6: 0.1,	247	Kachhiya H, et al. [2021]
	silica gel 60F- 254	v/v/v)		

 Table 6: TLC (thin layer chromatography) or HPTLC (High performance liquid chromatography) methods for Solifenacin Succinate.

Sample matrix	Stationary Phase	Mobile Phase	Wavelength (nm)	Retention Factor	Author and Publication year
API	plates precoated with silica gel 60F254 column with 250µm thickness	methanol: water: Glacial acetic acid (9: 1: 0.1v/v/v)	216	0.49 ± 0.03	Damle M, et al. [2016]
Tablets	aluminum plates pre-coated with silica gel F254.	methanol: ethyl acetate: triethylamine (8: 2: 0.1).	222	-	Shah D, et al.

Analytical System	Sample matrix	Stationary Phase	Mobile Phase	Detection	Author and publication year
LC-MS/MS	SFS in rat plasma	Gemini-NX C18 (50 × 4.6mm, 5µm) column	5mM Ammonium formate, pH 3: methanol (20: 80v/v)	proton adducts at m/z 363.2®193.2 and 368.2®198.2 in multiple reaction monitoring mode (MRM).	Shaik R, et al. [2014]
LC-MS	SFS in human plasma	Pentafluoropheny lpropylsilica Column (50 × 4.6mm, 5µm)	methanol- 100mM ammonium acetate containing 1% of formic acid (90: 10 v/v)	m/z 363.2®193.2 and 368.2®198.2.	Macek J, et al. [2010]

Table 7: Hyphenated techniques for Solifenacin Succinate.

CONCLUSION

This review geared toward specializing in numerous analytical stratergies according for the assay of both the drugs. A broad vary of techniques is out there for the estimation of Solifenacin succinate and Mirabegron alone but in combination of both the drugs only HPTLC method is available for estimation. For analysis of Solifenacin succinate and Mirabegron, HPLC-UV provides correct result and low price compared to advance detection techniques. The information provided in the article helps researcher to develop stability indicating method, pharmacokinetic studies and quantification in biological fluids. This review includes the entire detail of analytical stratergies obtainable on Solifenacin succinate and Mirabegron which can be substantiative for any analysis of drug.

Conflicts of Interest: All the authors declared that they have no conflicts of interest.

Abbreviations **MB** Mirabegron SFS Solifenacin Succinate BCS Biopharmaceutics Classification system **FDC** Fixed dose combination GC Gas Chromatography **HPLC** High Performance Liquid Chromatograpy **HPTLC** High Performance thin layer Chromatograpy **IUPAC** International Union of pure and applied Chemistry LC-MS/MS Liquid Chromatography mass spectroscopy **mg** Milligram **ml** Milliliter TLC Thin Layer Chromatography UV-Vis Ultra-Violet visible v/v Volume by volume

REFERENCES

- 1. Drug Profile of Mirabegron" accessed on October 2021,https://go.drugbank.com/drugs/DB08893
- 2. "Drug Profile of Solifenacin Succinate" accessed on October 2021,

I

https://go.drugbank.com/drugs/DB01591

- 3. "Schematic Diagram of Site of action of Drug" Accesses on, October 2021. https://slidetodoc.com/overactive-bladder-and-urgeincontinence-in-men- current/
- 4. Badike S, Nerusula A and Boyina S, "Analytical method development and validation for the estimation of Mirabegron in Pure and its solid dosage form by UV-spectrophotometric method." *Int. J. Res. Pharm. Sci. Tech*, **2020**; 1(4): 146-150.
- Raveendra G, Kumar V, Kalyani M, Roshna Md, Jeevana R, Kumar V and AjayS, "Stability-indicating simultaneous estimation of Vildagliptin and Mirabegronin bulk and pharmaceutical dosage form by UV-visible spectroscopy." World. J. Pharm. Pharm. Sci, 2017; 6(5): 912-925.
- Nageswara Rao R, Madhuri D, Reddy S, Rani K, Tejaswini P and Gandla K, "development and validation of derivative spectrophotometric method for estimation of Mirabegron in bulk and tablet dosage form." *World. J. Pharm. Res*, 2017; 6(14): 760-767.
- 7. Spandana R, Nageswara Rao R and Reddy S, "Analytical method development and validation for the estimation of Mirabegron in bulk and pharmaceutical dosage form." *Indo. Am. J. Pharm. Res*, **2016**; 6(11): 6880-6887.
- Srinivasa R, Kumar H, Chiranjeevi P and Rao V, "simultaneous estimation of Solifenacin succinate and Tamsulosin Hydrochloride in Combined dosage form by using first order derivative spectrophotometric method." *In. J. Pharm. Sci*, 2021; 83(2): 331-335.
- 9. Saiyed N, Patel D and Desai S, "Development and validation of first order derivative spectrophotometric method for estimation of Alfuzosin Hydrochloride and Solifenacin succinate in combined dosage form." *Int. J. Pharm. Pharm. Res*, **2015**; 2(4): 176-183.
- Hepsebah N and Kumar A, "Assay method development and validation for the estimation of Solifenacin succinate in Tablets by UV-Spectrophotometry." *Indo. Am. J. Pharm. Sci*, 2015;

2(6): 978-983.

- 11. Mohan C, Hemalatha B, Shainy B, Vasundhara, Sandhya S and Kumar A, "A rapid RP-HPLC method development and Validation for the Quantitative estimation of Solifenacin Succinate in tablets." *Int. J. Pharm. Pharm. Sci*, **2014**; 6(10): 201-204.
- Teja G, Dasu D, Srinivasa P and Ravishankar P. "Quantitative analysis of Solifenacin Succinate in pharmaceutical dosage form using UV-absorption spectroscopy." J. Chem. Pharm. Sci, **2013**; 6(3): 195-198.
- 13. Singh L and Nanda S, "Spectrophotometric estimation of Solifenacin succinate in tablet formulations." *Pharm. Methods*, **2011**; 2(1): 21-24.
- 14. Bharathi T and Bhadre G, "RP-HPLC method development and validation for the quantitative determination of Potential Impurities of Mirabegron." Am. J. Pharm. Health. Res, **2021**; 9(1): 2-9.
- 15. Suryawanshi R, Shaikh S and Patil S, "RP-HPLC method Development and Validation for the Estimation of Mirabegron in Bulk and Dosage Form." *J. Drug. Deliv. Ther*, **2020**; 10(1): 31-38.
- 16. Yadav P, Chhalotiya U, Patel K and Tandel J, "Quantification of a β -adrenergic receptor drug Mirabegron by stability Indicating LC method and UV-Visible Spectroscopic Method in bulk and pharmaceutical dosage form." *Chem. Meth*, **2020**; 4: 340-358.
- 17. Panchmarthy R, Kishore K, Babji B and Sulthana S, "Analytical method development and validation for the determination of Mirabegron in pharmaceutical dosage form by RP-HPLC." *Int. J. Pharm. Sci. Res*, **2020**; 11(5):2223-2228.
- 18. Ramazani A and Rezaei M, "RP-HPLC method development and validation for the quantitative estimation of Mirabegron in extended-release tablets." *J. Med.Chem. Sci*, **2018**; 1: 36-40.
- 19. Saipriya P, Kumar M, Marakatham and Kanduri V, "To develop a new RP- HPLC method for the estimation of Mirabegron in Pharmaceutical dosage forms with forced degradation studies." *Global Trends Pharm. Sci*, **2018**; 9(3): 5692-5701.
- 20. Jyothsna M, Ahmed R, Ramesh T, Syed A and Kranthi R, "Method development and validation of Mirabegron in bulk drug and pharmaceutical dosage form." *J. Pharm. Bio. Sci*, **2018**; 13(1): 78-83.
- 21. Mounika B, Srikanth L and Venkatesha A, "Determination and validation of RP-HPLC method for the estimation of Mirabegron in tablet dosage form." *Int.J. Curr. Pharm. Res*, **2017**; 9(5): 140-151.
- 22. Spandana R, Nageswara Rao R and Reddy S, "Analytical method development and validation for the estimation of Mirabegron in bulk and pharmaceutical dosage form." *Indo. Am. J. Pharm. Res*, **2016**; 6(11): 6880-6887.
- 23. Zhou F, Zhou Y, Zou Q, Sun L and Wei Ping, "Liquid chromatographic separation and thermodynamic investigation of Mirabegron

I

Enantiomers on a Chiralpak AY-H column." J. Chormatogr. Sci. Adv, 2015; 1-5.

- 24. Tanuja A, Ganapaty S and Varanasi M, "Stability indicating RP-HPLC method development and validation for the determination of Solifenacin Succinate bulk and its pharmaceutical formulation." Res . j. Pharm. Tech, 2021; 14(&): 1-14.
- 25. Bhavana V, Kumar H Srinivasa R and Prasad K, "RP-HPLC method for estimation of Solifenacin Succinate in API and tablet dosage form." *Asian. J. Pharm. Anal*, **2019**; 1-7.
- 26. Reddy H, Reddy R, Park Y, Reddy H, Park S and Cho W. "Stability-Indicating HPLC method for Quantification of Solifenacin Succinate & Tamsulosin Hydrochloride along with its impurities in tablet dosage form." *Am. J. Anal. Chem*, **2016**; 7: 840-862.
- 27. Attia A, Eman Y, Mohamed G and Ahmed H, "liquid chromatographic determination of Solifenacin Succinate, Flavoxate Hydrochloride and Tolterodine Tartate in Bulk Drugs and their pharmaceutical dosage forms." *J. Chem. Soc*, **2016**; 61: 2772-2776.
- 28. Mohan C, Hemalatha B, Shainy B, Vasundhara, Sandhya S and Kumar A, "A rapid RP-HPLC method development and Validation for the Quantitative estimation of Solifenacin Succinate in tablets." *Int. J. Pharm. Pharm. Sci*, **2014**; 6(10): 201-204.
- 29. Srinivasa B, Shaik R, Bannoth C, Reddy C and Zayed B, "Bioanalytical method for quantification of Solifenacin in rat plasma by LC-MS/MS and its application to pharmacokinetic study." *J. Anal. Sci. Tech*, **2014**; 5(35): 1-8.
- Desai N, Syed H, Vasanthraju S and Karthik A and Udupa N, "Development and Validation of Stability indicating HPLC method for determination of Solifenacin in Bulk Formulations." *Int. J. Pharm. Pharm. Sci*, 2011; 3(1): 70-74.
- 31. Yanagihara T, Aoki T, Soeishi Y, Iwatsubo T and Kamimura H, "Determination of Solifenacin succinate, a novel muscarinic receptor antagonist, and its major metabolite in rat plasma by semi-micro high performance liquid chromatography." *J. Chromatogr. B*, **2007**; 859: 241-245.
- 32. Krishna S, Rao B and Rao S, "A validated rapid stability-indicating method for the determination of related substances in Solifenacin Succinate by Ultra-Fast Liquid Chromatography," *J. Chromatogr. Sci*, **2010**; 48: 807-810.
- 33. Yadav P, Chhalotiya U, Patel K, Kachhiya H and Shah D, "Quantification of a β -adrenergic receptor agonist drug Mirabegron in presence of degradants by high performance thin layer Chromatography." *Anal. Chem. Lett*, **2021**; 11(4): 512-522.
- 34. Damle M and Rokade P, "Development and validation of stability indicating HPTLC method for determination of Solifenacin Succinate as bulk drug and intablet dosage form." *Int. J. Pharm. Sci. Drug*

Res, 2016; 8(4): 218-222.

- 35. Shah D, Tahilramani P, Patel V and Chhalotiya U, "High Performance thin layer chromatography method for the estimation of Mirabegron and Solifenacin Succinate used in the treatment of Overactive Bladder." *J. Planar. Chromatogr*, **2019**; 32(4): 323-327.
- 36. Srinivasa B, Shaik R, Bannoth C, Reddy C and Zayed B, "Bioanalytical method for quantification of Solifenacin in rat plasma by LC-MS/MS and its application to pharmacokinetic study." *J. Anal. Sci. Tech.* 2014, 5(35), 1-8.
- Macek J, Ptacek P and Klima J, "Determination of Solifenacin in human plasma by liquid chromatography-tandem mass spectrometry." *J. Chromatogr. B*, 2010; 878: 3327-3330.

I