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1. INTRODUCTION 
 

A risky complication of excess bleeding may result in the 

need for blood transfusion which is associated with 

substantial morbidity and mortality. Nearly 50% of 

deaths occurring within the first 24 hours of traumatic 

injury and up to 80% of intraoperative trauma mortality 

are due to hemorrhage.
[1] 

The excessive blood loss after 

injury is prevented by coagulation and the blood clots 

after wound repair are removed by fibrinolysis, 

physiologically. Thrombosis or hemorrhage is outcome 

of the pthological alterations of this delicate balance. The 

key protein in fibrinolysis is plasmin and it results from 

plasminogen activation. The dysregulation of this system 

is hyperfibrinolysis, which plays an important role in 

major bleeding events.
[2]

 To reduce blood loss and 

transfusion and in the treatment of heavy menstrual 

bleeding antifibrinolytic agents are widely used in major 

surgeries and trauma episodes.
[3] 

The effects of 

antifibrinolytics are elicited by competitively reducing 

the binding of plasminogen to fibrin and inhibiting the 

activation of plasminogen to plasmin, an enzyme that 

degrades fibrin clots, fibrinogen and other plasma 

proteins.
[4]

 Adverse side effects and potential risk of 

thrombotic complications has been associated with these 

compounds.
[5-7]

 Due to the safety issues aprotinin, a 

polypeptidic, bovine-derived protease inhibitor, was 

withdrawal from the market although, it was an effective 

agent used to reduce bleeding during complex 

surgery.
[8,9]

 The European Medicines Agency (EMA) has 

recently recommended that the suspension be lifted for a 

restricted range of indications.
[10]

 Therefore new 

therapeutic strategies are needed to prevent major 

bleeding events.  

 

The fibrinolytic and matrix metalloproteinase (MMP) 

systems cooperate in thrombus dissolution.
[11]

 The action 

of MMPs either through direct fibrinogen targeting or by 

enhancing tissue plasminogen activator (tPA)-induced 

fibrinolysis may provide a new pharmacological target 

for fibrinolysis control.
[12]

 The fibrinolytic activity and 

bleeding time markedly reduced in MMP-10 null mice 

and administration of active recombinant human MMP-

10 reversed it.
[12]

 The another fibrinolytic MMP, MMP-

3, which is 82% homologous to MMP-10,12 has also 

been associated with intracranial hemorrhage.
[13]

 In this 

way, the inhibition of MMP-10, MMP-3 and/or other 

MMPs may present a new opportunity for controlling 

bleeding. However, in human cancer trials the 

hydroxamate-based MMP inhibitors were of limited 

clinical success due mainly to lack of efficacy and to 

reports of side-effects such as musculoskeletal pain and 

inflammation and which occurred after 2-3 months of 

treatment.
[14,15]

 and subsided within 1-3 weeks of 
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discontinuation.
[15]

 but there is still hope for MMP 

inhibition as a therapeutic approach.
[16]

 

 

The doses that required for acute use in antihemorrhagic 

treatment with MMP inhibitors are much lower than 

those for reducing metastasis.
[17,18]

 and this indication 

only requires short-term MMP inhibition leading to a 

new therapeutic opportunity for MMP inhibitors, as 

antihemorrhagic agents. This hypothesis was recently 

demonstrated with a synthetic broad-spectrum MMP 

inhibitor GM6001 (Ilomastat) and a novel preclinical 

antihemorrhagic candidate, CM-352.
[17]

 This novel 

preclinical candidate CM-352 showed remarkable 

efficacy and safety for the acute treatment of 

hemorrhage. MMP inhibitors (MMPi) have been 

explored as anticancer, anti-inflammatory and antiviral 

agents. To target the zinc catalytic center of these 

enzymes different structures have been designed with the 

majority of them containing a hydroxamic acid group 

acting as a chelating zinc binding group (ZBG).
[19]

 α-

sulfonyl-4-tetrahydropyranyl (THP) and α-sulfonyl-α-

piperidinyl hydroxamates including SC-78080/SD-2590 

and the α-THP 7 (SC-77774) have been explored as 

potent MMP-2, -9 and -13 inhibitors.
[20,21]

 These 

compounds spare MMP-1. The α-sulfone α-THP series 

possesses better ADME and PK properties than the 

closely related β-sulfone α-THP core of the RS-

130830.
[22]

 The MMP inhibitor belonging to α-sulfone α-

piperidinyl series showed clinically relevance in 

advanced rabbit osteoarthritis model.
[23]

 A novel 

chemical series of compounds belonging to α-

spiropiperidine hydroxamates has been synthesized by 

Orbe et al.
[24]

 The aim of present communication is to 

establish the quantitative relationships between the 

reported activities and molecular descriptors unfolding 

the substitutional changes in titled compounds. 

 

2. MATERIALS AND METHODS  
 

2.1 Biological actions and theoretical molecular 

descriptors 

The reported twenty seven α-spiropiperidine 

hydroxamates are considered as the data set for present 

study.
[24]

 These derivatives were evaluated for their 

MMP-3 and MMP-10 inhibitory activities and were 

reported as IC50. The MMP-3 and MMP-10 activities are 

very highly correlated to each other (n = 27, r = 0.988, s 

= 0.195, F = 1055.08). Thus only the MMP-3 activity has 

been taken into account in the present study. The 

reported MMP-3 activity on molar basis (as pIC50) along 

with the structures of these analogues is shown in Table 

1. In the dataset, the initial assessment of activity with all 

descriptors has suggested the compounds 14 and 19 as 

potential outliers. An outlier to a QSAR can indicate the 

limits of applicability of QSAR models. These outliers 

are not part of the data set. The data set was sub-divided 

into training set to develop models and test set to validate 

the models externally. The test set compounds which 

were selected using an in-house written randomization 

program, are also mentioned in Table 1. 

 

S
R2

O O

N
H

HO

O

N
R1 

 

Table 1: Structures, observed and calculated MMP-3 inhibitory activities of α-spiropiperidine hydroxamates.   
 

Cpd. R1 R2 

 pIC50
a
 

Obs.
b
 

 Calculated 

Eq. 

(2) 

Eq. 

(3) 

Eq. 

(4) 

Eq. 

(5) 

Eq. 

(6) 

Eq. 

(7) 
PLS 

1
c
 H 

F 

4.72 6.11 6.05 5.94 5.69 5.63 6.00 6.52 

2 H 

O  

7.02 6.52 6.28 5.94 6.85 6.66 6.56 6.92 

3 H 

O

OMe

 

8.05 7.96 8.04 8.36 7.86 8.41 8.24 8.29 

4 H 
O

OMe 

6.75 6.96 6.95 7.01 6.97 6.56 6.49 6.79 

5 H 
O

OMe

 

4.70 4.88 4.90 4.97 4.82 5.10 5.08 4.60 

6 H 

O

OCF3

 

8.40 7.91 7.85 8.04 8.38 8.23 8.28 8.43 
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7 H O

OCF3 

7.70 7.77 7.90 7.59 7.90 8.07 7.94 7.66 

8
c
 H N

H

OCF3 

6.94 7.31 7.47 7.41 7.57 8.05 7.94 7.39 

9 H 

O  

8.22 7.65 7.75 8.37 7.57 7.59 7.71 7.81 

10 H 

O  

7.68 8.02 7.61 7.01 7.33 7.47 7.62 7.56 

11 H 

O

OCF3

 

8.40 7.91 7.85 8.04 8.38 8.23 8.28 8.43 

12 H 

O

O

N
H

 

7.68 7.55 7.56 7.96 7.98 7.84 7.65 7.62 

13
c
 H 

O

O

N

 

7.72 7.26 7.23 8.10 7.78 7.55 7.58 7.39 

14
d
 H 

O

N

 

-
d
 -

d
 -

d
 -

d
 -

d
 -

d
 -

d
 -

d
 

15 H 

O

H

N

OMe

 

7.80 8.09 8.08 7.39 7.42 6.64 6.60 7.56 

16
c
 H 

O OMe 

8.15 7.39 7.51 7.83 7.17 7.46 7.27 7.34 

17 H 
O

MeO  

6.04 6.02 6.03 6.18 7.27 6.88 6.67 6.52 

18 H 
O

H
N

O  

7.19 7.36 7.27 7.48 7.77 6.67 6.55 7.00 

19
d
 H O

ON
H  

-
d
 -

d
 -

d
 -

d
 -

d
 -

d
 -

d
 -

d
 

20 H 

O OMe

N
H

O

 

6.50 6.62 7.02 6.68 7.18 6.33 6.33 6.18 

21 H 
O

 

7.34 7.01 7.14 7.51 7.14 7.88 8.04 7.48 
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22 H 
O

HN

O

 

7.41 7.28 7.47 7.08 6.97 7.48 7.28 6.80 

23 H 
O N

O  

6.32 7.14 6.81 7.42 6.84 6.90 6.64 6.99 

24 H 

O

Cl OCF3

 

5.02 5.29 5.44 5.56 4.85 5.61 6.14 5.57 

25 CH3 

O

OMe

 

8.00 8.85 8.96 8.13 7.61 8.38 8.47 8.57 

26 (CH2)2CF3 

O

OMe

 

8.22 7.67 7.53 7.69 7.36 7.51 7.89 7.65 

27
c
 C(=O)CH3 

O

OMe

 

8.30 7.79 7.58 7.74 7.64 7.05 7.40 7.62 

a
IC50 on molar basis; 

b
Taken from reference.

[24]
 
c
Compound included in test set; 

d
 “Outlier” compound not included in 

data set.  

 

The structures of the all the compounds (listed in Table 

1) were drawn in 2D ChemDraw.
[25]

 and subjected to 

energy minimization in the MOPAC using the AM1 

procedure for closed shell system after converting these 

into 3D modules. The energy minimization was carried 

out to attain a well defined conformer relationship 

among the congeners under study. The 0D- to 2D-

molecular descriptors of titled compounds was computed 

using DRAGON software.
[26]

 This software offers a large 

number of descriptors corresponding to ten different 

classes of 0D- to 2D-descriptor modules. The different 

descriptor classes include the constitutional, topological, 

molecular walk counts, BCUT descriptors, Galvez 

topological charge indices, 2D-autocorrelations, 

functional groups, atom-centered fragments, empirical 

descriptors and the properties describing descriptors. 

These descriptors offer characteristic structural 

information specific to the descriptor class. The 

definition and scope of these descriptor’s classes is given 

in Table 2. 

 

Table 2: Descriptor classes used for the modeling of MMP-3 inhibitory activity of α-spiropiperidine 

hydroxamates.  
 

S. No. Descriptor Class (Acronyms)
a
 Definition and Scope 

1 Constitutional (CONST) 
Dimensionless or 0D descriptors; independent from molecular 

connectivity and conformations 

2 Topological (TOPO) 2D-descriptor from molecular graphs and independent conformations 

3 Molecular walk counts (MWC) 
2D-descriptors representing self-returning walk counts of different 

lengths 

4 
Modified Burden eigenvalues 

(BCUT)  

2D-descriptors representing positive and negative eigenvalues of the 

adjacency matrix, weights of the diagonal elements and atoms 

5 
Galvez topological charge indices 

(GALVEZ)  

2D-descriptors representing the first 10 eigenvalues of corrected 

adjacency matrix 

6 
2D-autocorrelatons  

(2D-AUTO)  

Molecular descriptors calculated from the molecular graphs by 

summing the products of atom weights of the terminal atoms of all the 

paths of the considered path length (the lag) 

7 Functional groups (FUN)  
Molecular descriptors based on the counting of the chemical functional 

groups 

8 Atom centered fragments (ACF)  
Molecular descriptors based on the counting of 120 atom centered 

fragments, as defined by Ghose-Crippen 

9 Empirical (EMP) 

1D-descriptors represent the counts of nonsingle bonds, hydrophilic 

groups and ratio of the number of aromatic bonds and total bonds in an 

H-depleted molecule 

10 Properties (PROP)  1D-descriptors representing molecular properties of a molecule 
a
Reference.

[26]
 



Sharma et al.                                                                    International Journal of Modern Pharmaceutical Research 

Volume 6, Issue 4. 2022                    │                  ISO 9001:2015 Certified Journal                    │                        93 

A total number of 467 descriptors, belonging to 0D- to 

2D- modules, have been computed to obtain most 

appropriate models describing the biological activity. 

Prior to model development procedure, all those 

descriptors that are inter-correlated beyond 0.90 and 

showing a correlation of less than 0.1 with the biological 

endpoints (descriptor versus activity, r < 0.1) were 

excluded. This procedure has reduced the total 

descriptors from 467 to 79 as relevant ones to explain the 

biological actions of titled compounds. 

 

2.2 Development and validation of model 

The combinatorial protocol in multiple linear regression 

(CP-MLR).
[27-31]

 and partial least squares (PLS).
[32-34]

 

procedures were used in the present work for developing 

QSAR models. The CP-MLR is a “filter”-based variable 

selection procedure, which employs a combinatorial 

strategy with MLR to result in selected subset 

regressions for the extraction of diverse structure–

activity models, each having unique combination of 

descriptors from the generated dataset of the compounds 

under study. The embedded filters make the variable 

selection process efficient and lead to unique solution. 

Fear of “chance correlations” exists where large 

descriptor pools are used in multilinear QSAR/QSPR 

studies.
[35,36]

 In view of this, to find out any chance 

correlations associated with the models recognized in 

CP-MLR, each cross-validated model has been subjected 

to randomization test.
[37,38]

 by repeated randomization 

(100 simulation runs) of the biological responses. The 

datasets with randomized response vector have been 

reassessed by multiple regression analysis. The resulting 

regression equations, if any, with correlation coefficients 

better than or equal to the one corresponding to 

unscrambled response data were counted. This has been 

used as a measure to express the percent chance 

correlation of the model under scrutiny. 

 

Validation of the derived model is necessary to test its 

prediction and generalization within the study domain. 

For each model, derived by involving n data points, a 

number of statistical parameters such as r (the multiple 

correlation coefficient), s (the standard deviation), F (the 

F ratio between the variances of calculated and observed 

activities), and Q
2

LOO (the cross-validated index from 

leave-one-out procedure) have been obtained to access 

its overall statistical significance. In case of internal 

validation, Q
2

LOO is used as a criterion of both robustness 

and predictive ability of the model. A value greater than 

0.5 of Q
2
 index suggests a statistically significant model. 

The predictive power of derived model is based on test 

set compounds. The model obtained from training set has 

a reliable predictive power if the value of the r
2

Test (the 

squared correlation coefficient between the observed and 

predicted values of compounds from test set) is greater 

than 0.5. Additional statistical parameters such as, the 

Akaike’s information criterion, AIC.
[39,40]

 the Kubinyi 

function, FIT.
[41,42]

 and the Friedman’s lack of fit, 

LOF.
[43]

 have also been calculated to further validate the 

derived models. The AIC takes into account the 

statistical goodness of fit and the number of parameters 

that have to be estimated to achieve that degree of fit. 

The FIT, closely related to the F-value, proved to be a 

useful parameter for assessing the quality of the models. 

A model which is derived in k independent descriptors, 

its F-value will be more sensitive if k is small while it 

becomes less sensitive if k is large. The FIT, on the other 

hand, will be less sensitive if k is small whereas it 

becomes more sensitive if k is large. The model that 

produces the lowest AIC value and highest FIT value is 

considered potentially the most useful and the best. The 

LOF factor takes into account the number of terms used 

in the equation and is not biased, as are other indicators, 

toward large number of parameters. 

 

2.3 Applicability domain 

The usefulness of a model is based on its accurate 

prediction ability for new congeners. A model is valid 

only within its training domain and new compounds 

must be assessed as belonging to the domain before the 

model is applied. The applicability domain (AD) is 

evaluated by the leverage values for each compound.
[44]

 

A Williams plot (the plot of standardized residuals 

versus leverage values (h)) is constructed, which can be 

used for a simple graphical detection of both the 

response outliers (Y outliers) and structurally influential 

chemicals (X outliers) in the model. In this plot, the AD 

is established inside a squared area within ±x standard 

deviations and a leverage threshold h*, which is 

generally fixed at 3(k + 1)/n (n is the number of training 

set compounds and k is the number of model 

parameters), whereas x = 2 or 3. If the compounds have a 

high leverage value (h > h*), then the prediction is not 

trustworthy. On the other hand, when the leverage value 

of a compound is lower than the threshold value, the 

probability of accordance between predicted and 

observed values is as high as that for the training set 

compounds. 

 

3. RESULTS AND DISCUSSION 
 

3.1 QSAR results 

In multi-descriptor class environment, exploring for best 

model equation(s) along the descriptor class provides an 

opportunity to unravel the phenomenon under 

investigation. In other words, the concepts embedded in 

the descriptor classes relate the biological actions 

revealed by the compounds. For the purpose of modeling 

study, 5 compounds have been included in the test set for 

the validation of the models derived from 20 training set 

compounds. A total number of 79 significant descriptors 

from 0D- to 2D- classes have been subjected to CP-MLR 

analysis with default “filters” set in it. Statistical models 

in three and four descriptors have been derived to 

achieve the best relationship correlating MMP-3 

inhibitory activity. Only one model in three descriptors 

and six models in four descriptors, having r
2
Test > 0.5, 

were obtained through CP-MLR. The four parameter 

models have shared 13 descriptors among them. All 

these 13 descriptors along with their brief meaning, 

average regression coefficients, and total incidence are 
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listed in Table 3, which will serve as a measure of their 

estimate across these models.  
 

 

Table 3: Identified descriptors
a
 along with their class, physical meaning, average regression coefficient and 

incidence
b
. 

 

Descriptor class, average regression coefficient  and (incidence) 

Constitutional descriptors (CONST): 
Sv (sum of atomic van der Waals volumes scaled on Carbon atom), -

4.505(1);  

Topological descriptors (TOPO): 

MSD (Balaban mean square distance index), 3.005(4); PW5 (path/walk 5 -

Randic shape index), -1.390(1); IC2 (information content index, 

neighborhood symmetry of 2-order), -2.375(1); SIC2 (structural 

information content index, neighborhood symmetry of 2-order), -2.201(1) 

Modified Burden eigenvalues 

(BCUT)  

BELm2 (lowest eigenvalue n.2 of Burden matrix/weighted by atomic 

masses), 2.177(4); BELv7 (lowest eigenvalue n.7 of Burden 

matrix/weighted by atomic van der Waals volumes), -1.815(1)  

Galvez topological  charge indices 

(GALVEZ): 

GGI5 (topological charge index of order 5), -2.558(2); JGI5 (mean 

topological charge index of order 5), -2.793(2)  

2D autocorrelations 

(2D-AUTO): 

MATS6m (Moran autocorrelation of lag-6/ weighted by atomic masses), 

2.923(1); MATS3e (Moran autocorrelation of lag-3/ weighted by atomic 

Sanderson electronegativities), -2.400(3); GATS1p (Geary autocorrelation 

of lag-1/ weighted by atomic polarizabilities), 2.455(1) 
 

a
The descriptors are identified from the four parameter 

models for activity emerged from CP-MLR protocol with 

filter-1 as 0.79, filter-2 as 2.0, filter-3 as 0.813 and filter-

4 as 0.3 ≤ q
2
 ≤1.0 with a training set of 20 compounds. 

b
The average regression coefficient of the descriptor 

corresponding to all models and the total number of its 

incidence. The arithmetic sign of the coefficient 

represents the actual sign of the regression coefficient in 

the models.  

 

The model in three descriptors is mentioned below 

pIC50 = 6.297 + 3.660(0.677)MSD – 3.374(0.752)IC2 + 

1.662 (0.662)C-025    

n = 20, r = 0.845, s = 0.615, F = 13.409, Q
2
LOO = 0.515, 

Q
2

L5O = 0.529 

r
2

Test = 0.517, FIT = 1.387, LOF = 0.618, AIC = 0.568

            (1) 

 

where n, r, s and F represent respectively the number of 

data points, the multiple correlation coefficient, the 

standard deviation and the F-ratio between the variances 

of calculated and observed activities. In above regression 

equations, the values given in the parentheses are the 

standard errors of the regression coefficients. The signs 

of the regression coefficients suggest the direction of 

influence of explanatory variables in the models. The 

positive regression coefficient associated to a descriptor 

will augment the activity profile of a compound while 

the negative coefficient will cause detrimental effect to 

it. In the randomization study (100 simulations per 

model), none of the identified models has shown any 

chance correlation. 

 

The descriptors MSD and IC2 participated in above 

models are the topological descriptors representing 

Balaban mean square distance index and information 

content index of 2
nd

 order neighborhood symmetry, 

respectively. The positive influence of descriptor MSD 

on the activity and negative influence of descriptor IC2 

suggested that higher values of descriptor MSD and 

lower values of descriptor IC2 would be beneficiary to 

the activity. The other participated descriptor C-025 is an 

atom centered fragment class descriptor. The positive 

contribution shown by it suggested that structure having 

R--CR--R type fragment would be favorable to the 

activity. 

 

This model in three descriptors has could account for 

nearly 71% variance in the observed activities. 

Considering the number of observations models upto 

four descriptors have been explored and all the six 

models having test set r
2
 greater than 0.5 are presented 

below: 

pIC50 = 9.187 – 1.390(0.438) PW5 – 3.081(0.523)JGI5 – 

2.347(0.571)MATS3e + 3.313(0.499)GATS3p    

n = 20, r = 0.919, s = 0.469, F = 20.436, Q
2
LOO = 0.625, 

Q
2

L5O = 0.716 

r
2

Test = 0.638, FIT = 2.270, LOF = 0.458, AIC = 0.366

            (2) 

pIC50 = 7.509 + 1.521(0.574) MSD – 2.504(0.643)JGI5 – 

2.372(0.609)MATS3e + 2.868(0.526)GATS3p    

n = 20, r = 0.907, s = 0.500, F = 17.496, Q
2
LOO = 0.549, 

Q
2

L5O = 0.576 

r
2

Test = 0.626, FIT = 1.944, LOF = 0.522, AIC = 0.417

            (3) 

pIC50 = 7.426 + 2.474(0.551) MSD + 1.546(0.553) 

BELm2 – 2.678(0.532)GGI5 – 2.480(0.650)MATS3e    

n = 20, r = 0.889, s = 0.545, F = 14.138, Q
2
LOO = 0.502, 

Q
2

L5O = 0.716 

r
2

Test = 0.735, FIT = 1.570, LOF = 0.620, AIC = 0.496

            (4) 

pIC50 = 2.851 + 3.638(0.655) BELm2 – 2.439(0.522) 

GGI5 + 2.922(0.563)MATS6m + 2.455(0.636)GATS1p    
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n = 20, r = 0.883, s = 0.559, F = 13.280, Q
2
LOO = 0.569, 

Q
2

L5O = 0.580 

r
2

Test = 0.680, FIT = 1.475, LOF = 0.651, AIC = 0.521

            (5) 

pIC50 = 7.330 – 4.505(1.172)Sv + 4.225(0.691)MSD – 

2.201(0.524) SIC2 + 2.092(0.679)BELm2    

n = 20, r = 0.871, s = 0.583, F = 11.897, Q
2
LOO = 0.527, 

Q
2

L5O = 0.623 

r
2

Test = 0.520, FIT = 1.321, LOF = 0.708, AIC = 0.567

            (6) 

pIC50 = 6.173 + 3.800(0.655)MSD -2.375(0.578)IC2 + 

1.432(0.588) BELm2 – 1.815(0.863)BELv7     

n = 20, r = 0.867, s = 0.592, F = 11.434, Q
2
LOO = 0.502, 

Q
2

L5O = 0.581 

r
2

Test = 0.506, FIT = 1.270, LOF = 0.730, AIC = 0.584

            (7) 

 

These models have accounted for nearly 84% variance in 

the observed activities. The values greater than 0.5 of Q
2 

index is in accordance to a reasonable robust QSAR 

model. The pIC50 values of training set compounds 

calculated using Eqs. (2) to (7) have been included in 

Table 1. The models (2) to (7) are validated with an 

external test set of 5 compounds listed in Table 1. The 

predictions of the test set compounds based on external 

validation are found to be satisfactory as reflected in the 

test set r
2
 (r

2
Test) values and the same is reported in Table 

1. The plot showing goodness of fit between observed 

and calculated activities for the training and test set 

compounds is given in Figure 1. 
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Figure 1: Plot of observed and calculated pIC50 values of training- and test-set compounds for MMP-3 

inhibition.   

 

It is evident from the signs of the regression coefficients 

that the newly appeared topological class descriptors 

PW5 and SIC2, and Galvez charge indices GGI5 and 

JGI5 contributed negatively to the activity. Thus lower 

values of path/walk 5 -Randic shape index (descriptor 

PW5) and structural information content index of 

neighborhood symmetry of 2-order (descriptor SIC2) and 

topological charge index of order 5 (GGI5) and mean 

topological charge index of order 5 (JGI5) would be 

beneficiary to the activity. The participated descriptors in 

above models MATS6m, MATS3e, GATS1p and 

GATS3p are 2D-autocorrelations. Except MATS3e all 

the descriptors have shown positive contribution to the 

activity advocating that a lower value of   descriptor 

MATS3e (Moran autocorrelation of lag-3/ weighted by 

atomic Sanderson electronegativities) and a higher 

values of descriptors MATS6m (Moran autocorrelation 

of lag-6/ weighted by atomic masses), GATS1p and 

GATS3p (Geary autocorrelation of lag-1 and -3, 

respectively/ weighted by atomic polarizabilities) would 

be favorable to the activity. Similarly on the same 

grounds higher value of BCUT descriptor BELm2 

(lowest eigenvalue n.2 of Burden matrix/weighted by 

atomic masses) and a lower values of descriptor BELv7 

(lowest eigenvalue n.7 of Burden matrix/weighted by 

atomic van der Waals volumes) in addition to a lower 

value of constitutional class descriptor Sv representing 

sum of atomic van der Waals volumes scaled on Carbon 

atom would augment the activity of titled compounds. 

 

A partial least square (PLS) analysis has been carried out 

on these 13 CP-MLR identified descriptors (Table 3) to 

facilitate the development of a “single window” 

structure–activity model. For the purpose of PLS, the 

descriptors have been autoscaled (zero mean and unit 

SD) to give each one of them equal weight in the 

analysis. In the PLS cross-validation, two components 

are found to be the optimum for these 13 descriptors and 

they explained 88.26% variance in the activity. The 

MLR-like PLS coefficients of these 13 descriptors are 

given in Table 4. 
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Table 4: PLS and MLR-like PLS models from the 13 descriptors of four parameter CP-MLR models for MMP-3 

inhibitory activities.   
 

A: PLS equation  

PLS components PLS coefficient (s.e.)
a
 

Component-1 -0.564(0.055) 

Component-2 0.250(0.051) 

Constant 7.222 

B: MLR-like PLS equation 

S. No. Descriptor MLR-like coefficient
b
 (fraction contribution)

c
 Order 

1 Sv -0.004 -0.001 13 

2 MSD 0.321 0.125 1 

3 PW5 -0.157 -0.061 10 

4 IC2 -0.146 -0.057 11 

5 SIC2 -0.158 -0.062 9 

6 BELm2 0.233 0.091 5 

7 BELv7 -0.215 -0.084 6 

8 GGI5 -0.247 -0.096 4 

9 JGI5 -0.287 -0.112 3 

10 MATS6m 0.207 0.081 7 

11 MATS3e -0.191 -0.075 8 

12 GATS1p 0.089 0.035 12 

13 GATS3p 0.310 0.121 2 

Constant 7.833 

C: PLS regression statistics Values 

n 20 

r 0.939 

s 0.383 

F 63.926 

FIT 5.327 

LOF 0.195 

AIC 0.198 

Q
2

LOO 0.833 

Q
2

L5O 0.835 

r
2

Test 0.503 
a
Regression coefficient of PLS factor and its standard error. 

b
Coefficients of MLR-like PLS equation in terms of 

descriptors for their original values; 
c
f.c. is fraction contribution of regression coefficient, computed from the 

normalized regression coefficients obtained from the autoscaled (zero mean and unit s.d.) data. 

 

For the sake of comparison, the plot showing goodness 

of fit between observed and calculated activities (through 

PLS analysis) for the training and test set compounds is 

also given in Figure 1. Figure 2 shows a plot of the 

fraction contribution of normalized regression 

coefficients of these descriptors to the activity.  

 

 
Figure 2: Plot of fraction contribution of MLR-like PLS coefficients (normalized) against 13 CP-MLR identified 

descriptors (Table 3) associated with MMP-3 inhibitory activity of α-spiropiperidine hydroxamates.  
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The PLS analysis has suggested MSD as the most 

determining descriptor for modeling the activity of the 

compounds (descriptor S. No. 2 in Table 4; Figure 2). 

The other descriptors in decreasing order of significance 

are GATS3p, JGI5, GGI5, BELm2, BELv7, MATS6m, 

MATS3e, SIC2, PW5, IC2, GATS1p and Sv. All these 

descriptors are part of Eqs. (1) to (7) and convey same 

inference in the PLS model as well. It is also observed 

that PLS model from the dataset devoid of CP-MLR 

identified 13 descriptors (Table 3) is inferior in 

explaining the activity of the analogues. 

 

3.2 Applicability domain (AD) 

On analyzing the model AD in the Williams plot, shown 

in Figure 3, of the model based on the whole dataset 

(Table 5), it has appeared that none of the compound was 

identified as an obvious outlier for the MMP-3 inhibitory 

activity if the limit of normal values for the Y outliers 

(response outliers) was set as 3 times of standard 

deviation units. An outlier to a QSAR is identified 

normally by having a large standard residual activity and 

can indicate the limits of applicability of QSAR models. 

None of the compounds listed in Table 1 were found to 

have leverage (h) values greater than the threshold 

leverage (h*=0.600). For both the training-set and test-

set, the suggested model matches the high quality 

parameters with good fitting power and the capability of 

assessing external data. Furthermore, all of the 

compounds were within the applicability domain of the 

proposed model and were evaluated correctly.  

 

Table 5: Models derived for the whole data set (n = 25) in descriptors identified through CP-MLR.  
 

Model r s F Q
2

LOO Eq. 

pIC50 = 9.704 – 1.481(0.452)PW5 – 3.487(0.531)JGI5 – 

2.696(0.535)MATS3e + 3.125(0.542)GATS3p    
0.900 0.531 21.486 0.668 (2a) 

pIC50 = 7.975 + 1.605(0.559)MSD – 2.824(0.649)JGI5 – 

2.830(0.555)MATS3e + 2.638(0.553)GATS3p    
0.891 0.554 19.348 0.625 (3a) 

pIC50 = 7.388 + 2.488(0.520)MSD + 1.855(0.512)BELm2 – 

2.612(0.512)GGI5 – 2.953(0.550)MATS3e    
0.891 0.553 19.392 0.637 (4a) 

pIC50 = 2.306 + 4.043(0.572)BELm2 – 2.387(0.534)GGI5 + 

2.938(0.584)MATS6m + 2.894(0.616)GATS1p    
0.873 0.595 16.099 0.573 (5a) 

pIC50 = 7.359 – 3.710(1.167)Sv + 3.954(0.732)MSD – 2.644(0.546)SIC2 + 

1.944(0.721)BELm2    
0.851 0.641 13.174 0.548 (6a) 

pIC50 = 5.678 + 3.804(0.688)MSD -2.857(0.601)IC2 + 1.665(0.608)BELm2 

– 0.943(0.765)BELv7     
0.848 0.646 12.866 0.519 (7a) 
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Figure 3: Williams plot for the training-set and test- set compounds for MMP-3 inhibitory activity. The 

horizontal dotted line refers to the residual limit (±3×standard deviation) and the vertical dotted line represents 

threshold leverage h* (= 0.600).   

 

CONCLUSIONS 
 

QSAR study has been carried out on the MMP-3 

inhibitory activity of α-spiropiperidine hydroxamates in 

0D- to 2D-Dragon descriptors. The derived QSAR 

models have revealed that the Balaban mean square 

distance index (descriptor MSD), path/walk 5 -Randic 

shape index (descriptor PW5), information content 

indices of 2
nd

 order neighborhood symmetry (descriptors 

IC2 and SIC2) in addition to 5
th

 order Galvez topological 

charge indices (descriptors GGI5 and JGI5) played a 

pivotal role in rationalization of MMP-3 inhibition 

activity of titled compounds. 

 

Atomic properties such as mass, volume and 

electronegativity in terms of atomic properties weighted 

descriptors MATS6m, MATS3e, GATS1p, GATS3p, 

BELm2, BELv7 and Sv are also predominant to explain 

MMP-3 inhibition actions of α-spiropiperidine 

hydroxamates. PLS analysis has also corroborated the 

dominance of CP-MLR identified descriptors. 

Applicability domain analysis revealed that the 

suggested model matches the high quality parameters 

with good fitting power and the capability of assessing 

external data and all of the compounds was within the 

applicability domain of the proposed model and were 

evaluated correctly. 
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