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INTRODUCTION  

Retinal illnesses are collectively referred to as 

retinopathy. They frequently affect the small blood 

vessels (capillaries) feeding the light-sensitive region of 

the eye, resulting in injury, fluid leakage, or the creation 

of new crisp blood vessels.
[1]

 The sensory membrane that 

receives light and transforms it into nerve signals is 

found inside the eye as part of the retina. In the brain, 

this impulse generates an image. Vision loss could be 

partial or total. It can appear gradually or unexpectedly, 

get better on its own or have permanent negative 

impacts.
[2] 

 

Retinopathy exists in different types, including as:(i) 

Premature Retinopathy (PR), a fibrous tissue forms 

behind the lens in this degenerative illness, which is only 

observed in premature infants and babies with low birth 

weight. It causes blindness and severe vision 

impairment.
[3] 

There are several warning signs, such as 

crossed eyes, near-sightedness, amblyopia (lazy eye), 

and retinal detachment.
[4]

 (ii) Diabetic Retinopathy, high 

blood glucose levels cause DR by weakening the retina's 

tiny blood vessels. As a result, the retina produces more 

fluid, blood, cholesterol, and other lipids, which causes 

the macula to thicken and expand.
[5] 

Observing more and 

more dark spots, poor night vision, fuzzy vision, seeing 

colours that seem faded or washed out, losing vision and 

vision that occasionally shifts from blurry to clear are 

some consequences.
[6] 

(iii) Central Serous Retinopathy, 

triggered by the accumulation of fluid behind the retina, 

which can seriously impair vision because the retina is 

made up of a thin tissue layer.
[7] 

Central vision that is 

dimmed, blurred, or distorted, straight lines that appear 

bent, crooked, or irregular in the affected eye, a dark area 

in the central vision, objects that appear shorter or farther 

away, and white objects that take on a brownish tinge or 

seem to duller in colour are all possible symptoms of 

central serous chorioretinopathy.
[8] 

(iv)Hypertensive 

Retinopathy, arises when high blood pressure causes 

damage to the retinal vessels.
[9] 

Eye swelling, double 

vision associated by headaches, blood vessel rupture, and 

reduced vision, are a few evidence.
[10]

  

 

This review explained mainly three pathological 

pathways of DR which include inflammatory, oxidative 

stress and apoptosis pathways. This review also 

emphasises the molecular mechanism of retinal 

cryoprotection of phytobioactives. These phytochemicals 

modulate inflammatory, apoptotic and oxidative stress 

pathways. Numerous phytochemicals, including 
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flavonoids, lignan, glycosides, phytoestrogen etc., 

reduces the production of Reactive Oxygen Species and 

inflammatory markers such as cytokines. 

 

Diabetic Retinopathy 

The non-infectious epidemic of the modern world is 

diabetes mellitus (DM).
[11] 

The WHO currently 

recognizes DM as a collection of metabolic illnesses 

characterized by the existence of hyperglycemia caused 

by insulin release or dysfunction. Individuals with DM 

who experience chronic hyperglycemia experience 

destruction, dysfunctional impairment, and insufficiency 

to a number of body organs, including the eyes, kidneys, 

nerves, heart, and blood vessels.
[12]

 Diabetes mellitus is a 

multifactorial disease, chronic illness that requires 

ongoing treatment and seems to have no permanent 

treatment to date.
[13]

 Increasing life expectancy in 

developed countries is one of the reasons why diabetes is 

more common.
[14]

 However, a longer longevity in those 

with diabetes mellitus is also associated with a higher 

risk of chronic microvascular and macrovascular 

complications brought on by the disease. Vascular 

complications are currently the leading cause of death 

and morbidity in people with diabetes mellitus, despite a 

dramatic drop in the number of deaths directly attributed 

to this condition.
[15]

 One third of diabetic individuals 

experience diabetic retinopathy, which is the most 

common, most dreaded by patients, and the leading 

cause of visual-specific neurovascular consequences of 

DM over the past 20 years.
[16,17] 

 80% of blindness in DM 

patients is triggered by DR,
[18,19]

 which can strike at any 

stage of the illness.
[20]

  

 

Severe retinal vascular disease known as DR is marked 

by the development of new blood vessels, increased 

vascular permeability, and infarction and congestion in 

the retina.
[21]

 This is brought on by microangiopathy, 

which affects the retina's precapillary arteries, capillaries, 

and venules. Damage arises from internal blood-retinal 

barrier rupture, which causes microvascular leakage and 

microvascular occlusion.
[22]

 DR is eye damage caused by 

prolonged high blood sugar. The walls of the retinal 

blood vessels weaken, allowing blood to pass through. 

This causes swelling and vision problems. Over time, 

new, weaker blood vessels grow, allowing blood to pass 

through and covering the center of the retina.
[23]

 This is 

because prolonged exposure to high blood sugar 

damages the retinal capillaries.
[24]

 Blindness is three 

times as common in those with diabetes than in the 

regular populace.
[25]

 It disrupts the retinal vasculature 

and results in consequences such capillary protrusion, 

congestion, cotton wool patches, aberrant 

neovascularization, and microaneurysms.
[26] 

 

Sequelae from retinal vascular abnormalities in 

diabetic retinopathy
 

Microvascular alterations in the retina can be caused by a 

chain of disastrous circumstances that are triggered by 

hyperglycemia. The consistency and functionality of the 

retina are impacted by these alterations, which eventually 

cause vision loss. By the time clinically detectable 

microvascular modifications can be made, significant 

and occasionally irreparable harm has already been done. 

Therefore, monitoring the development of diabetic 

retinopathy requires early molecular alterations 

detection.
[27]

  

 

Microaneurysms (MA) – These are the first clinically 

discernible symptoms, structural deterioration and 

deformation of the capillary wall.
[28]

 Small sac that can 

develop as a result of partial capillary wall stretching.
[22]

 

They initially make a brief appearance in the fovea and 

may later vanish.
[29]

  

 

Haemorrhages – Subretinal dot haemorrhages are the 

consequence of impaired capillary wall punctures. 

Precapillary arterioles in the retinal nerve fibre layer are 

the source of superficial or flame-shaped 

haemorrhages.
[30]

 The inner nuclear and outer plexiform 

layers of the retina contain deep haemorrhages, also 

known as dot and blot haemorrhages, which are more 

commonly associated with severe hypertension.
[22]

  

 

Cotton Wool Spots/Soft Exudate – Cotton wool patches, 

which are axoplasmic aggregates from nerve fibre 

terminals, are signs of bloodlessness tissue in the nerve 

fibre layer as a result of the closure of retinal micro 

vessels.
[31]

 Axonal flow, often referred as axoplasmic 

transport proceeds in two directions: among somatic cells 

(the body of neurons) and synapses which transport 

organelles and cellular components.
[32]

  

 

Retinal oedema – Microvascular leakage causes retinal 

inflammation, which is a sign that the inner blood-retinal 

barrier has broken down. It manifests as thickened, 

greyish regions of the retina. The macula's swelling, 

which may resemble a petal-shaped cyst, can seriously 

impair vision.
[22]

  

 

IRMA (Intraretinal Microvascular Abnormalities) – It is 

the linkage between the retinal arterioles and veins that 

are observable adjacent to the capillary occlusion area 

and circumvent the capillaries. The retina is where 

IRMA is found, and it avoids big blood arteries.
[30]

  

 

When it refers to diabetic retinopathy, there are two 

broad categories: Non-Proliferative Diabetic Retinopathy 

(NPDR) and Proliferative Diabetic Retinopathy (PDR). 

Despite the fact believed that several, if not all, of the 30 

distinct forms of retinal cells are compromised by 

diabetes, the extent of the vascular lesion determines the 

type of retinopathy because it is possible to see the inner 

retinal vasculature.
[33]

 The main difference between 

NPDR and PDR is the presence of angiogenesis in 

PDR.
[20]

 Macular edema can develop at any time as 

diabetic retinopathy progresses.
[34]

  

 

NPDR can be split into three different phases: minimal, 

intermediate, and chronic NPDR, depending on the 

seriousness of the consequences. This stage is a 
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persistent damage of the retinal microvascular structures 

that enables diabetic retinopathy grow pathologically.
[35]

 

(i)The initial stage is thought to be mild non-proliferative 

retinopathy, which is linked to the development of MA. 

(ii) Moderate non-proliferative retinopathy, where the 

retina's blood vessels may expand and deform as the 

disease progresses, losing their capacity to transport 

blood. (iii) Severe non-proliferative retinopathy causes 

the retina to receive less blood because more blood 

vessels are blocked, encouraging the retina to develop 

new blood vessels. PDR is a highly sophisticated stage of 

the disease in which the retina's growth factors stimulate 

the formation of new blood vessels along the retina's 

inner surface in some vitreous gel that fills the eye.
[36] 

 

Molecular Frameworks Implicated In The Diabetic 

Retinopathy Pathogenesis 

Innumerable pathological parameters, especially 

hyperglycemia and genetic susceptibility, can trigger the 

onset and advancement of diabetic retinopathy. In 

diabetes-induced retinal exertion that eventually result in 

microvascular destruction and retinopathy, several key 

systems have been identified, together with (i) the polyol 

pathway, (ii) soreness, (iii) Redox imbalance, (iv) 

nonenzymatic glycation, (v)protein kinase C (PKC) 

excitation, and (vi) congenital. Antecedent in the 

evolution of proliferative retinopathy, these 

methodologies boost the expression of VEGF.
[37,38]

 while 

also encouraging the emergence of new blood vessels, 

enhancing vascular permeability, and driving leukocyte 

activation and adherence
 
(Figure 1).

[39,40]
 

 

Persistent hyperglycemia: It is thought to be the 

predominant pathogenic aspect of DR.
[41]

 The polyol 

pathway as well as other additional glucose metabolism 

routes are activated by hyperglycemia. Advanced 

glycation end products (AGEs) are generated as a 

consequence of PKC activation, non-enzymatic protein 

glycation and oxidative stress. The stimulation of 

cytokines, growth factors, and vascular endothelial 

dysfunction that results from these alternative 

routes finally causes an increase in vascular permeability 

and microvascular occlusion. Microvascular blockage 

triggers retinal ischemia, which encourages the growth of 

IRMA and neovascularization.
[42] 

 

Redox imbalance: Cell and tissue destruction are the 

outcome of elevated amounts of reactive oxygen species 

(ROS).
[43] 

 

The polyol route: The enzyme aldose reductase in this 

transform’s glucose to sorbitol. Because sorbitol is 

impermeable, it builds up inside all retinal cells, 

triggering osmotic deterioration of the cells. 

Additionally, the reduction process's consumption of 

NADPH (reduced nicotinamide adenine dinucleotide 

phosphate) caused enormous oxidative destruction.
[44] 

 

PKC: Transduction of signals is involved. Its activation 

causes abnormalities in the basement membrane and 

vascular structure, including vascular stasis, capillary 

occlusion, enhanced vascular permeability, and the 

generation of angiogenic growth factors.
[45] 

 

Non-enzymatic protein glycation: This causes the 

production of AGEs, which are in charge of altering the 

extracellular matrix proteins, when reducing sugars react 

with lipids, free amino acids of nucleic acids, and 

proteins.
[46] 

 

 
Figure 1: Pathogenesis of DR. (VEGF: Vascular endothelial growth factor). 
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Phytochemicals For Diabetic Retinopathy 

Management  

Organic natural ingredients called nutraceuticals are 

enriched with substances including vitamins, 

antioxidants, minerals, fatty acids, as well as amino acids 

that can halt the advancement of some disorders or 

provide a wide range of health improvements. Numerous 

studies have demonstrated that nutraceuticals provide 

diverse clinical aspects and defend from a number of 

ailments.
[47]

 Nutraceuticals are prescribed to treat 

diabetes because they improve insulin sensitivity, control 

metabolism, and lower hyperglycemia.
[48]

 One of the 

most widespread and well-known phytonutrients are 

terpenoids, alkaloids, glycosides, flavonoids, and 

tannins.
[49]

 Phytochemicals have well-known antioxidant, 

antiangiogenic, and anti-inflammatory properties that can 

be retrieved by food consumption. The majority of 

phytochemicals are thought to be friendlier treatment 

options for diabetic retinopathy than pharmaceuticals. In 

pre-clinical research, phytochemicals controlled 

oxidative stress, inflammation, and apoptosis pathways 

to diminish DR (Figure 2).
[50] 

 

Alkaloids: Alkaloids are secondary plant metabolites 

that are also present in mammals, microbes, and fungi.
[51]

 

These basic alkaloids typically have heterocyclic 

structures, contain one or more nitrogen atoms, and are 

derived from amino acids. Alkaloids are categorised 

according to their pharmacological properties, chemical 

make-up, biochemical ancestry, and taxonomic origin. 

For their possible antidiabetic properties, different 

alkaloids have been taken from a range of herbal plants 

and tested on diverse animal species.
[52]

 It has been 

suggested that it is one of the active ingredients in some 

plants used to treat diabetes.
[53] 

In order to reduce 

diabetic retinopathy, certain alkaloids include: betaine, 

cannabidiol, and sinomenine.  

 

 

 
Figure 2: Speculative scenario resulting in diabetic retinopathy from elevated blood glucose levels and the 

impact of phytochemicals. The green arrow depicts the retardation by phytochemicals, while the red arrow 

signifies the elevated oxidative stress, inflammation, and apoptotic pathways in DR. 

 

Glycosides: Glycosides are a common type of secondary 

metabolite found in plants.
[54]

 The aglycone (genin) and 

glycone (saccharide) components of glycosides are two 

chemically and functionally distinct sections. A 

glycosidic bond connects the saccharide and aglycone 

portions of a glycoside.
[55]

 Several glycosides have been 

shown to diminish diabetic retinopathy, including: 

arctiin, aloe-emodin, decursin, gastrodin, 

gentiopicroside, hesperidin, hesperetin, lithospermic acid 

B, malvidin, paeoniflorin, physcion 8-O-β- 

glucopyranoside, pterostilbene, sauchinone, scutellarin, 

and shikonin. 

 

Flavonoids: Among the most abundant and extensively 

dispersed classes of organic ingredients inside the plant 

world are polyphenols, which are scientifically referred 

to as substances with phenolic structural characteristics. 

There are many subgroups of phenolic compounds in this 

group of naturally occurring chemicals, which is very 

diverse. Fruits and vegetables include flavonoids, a 

polyphenol subclass with particular biological properties 

that include anti-inflammatory, antiviral, and antioxidant 

activities. Flavonoids make up around 60% among all 

polyphenols.
[56]

 Flavanols, isoflavones, flavones, 

anthocyanins, flavanones and flavonols are the six types 

of flavonoids that can be divided based on their chemical 

structure.
[57]

 Flavonoids can regulate lipid and 

carbohydrate metabolism, alleviate hyperglycemia, better 

control inflammatory responses, increase insulin 

resistance, and enhance β-cell performance, which may 

assist to delay the onset of long-term chronic diabetes 

consequences including diabetic retinopathy.
[58]

 The 
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reduction of diabetic retinopathy by a number of 

flavonoids has been reported, including: anthocyanins, 

alpha-mangostin, baicalein, biochanin, curcumin, 

chrysin, epigallocatechin-3-gallate, eriodictyol, 

formononetin, genistein, icariin, kaempferol, luteolin, 

naringin, puerarin, quercetin, resveratrol, rutin, sesamin, 

silybin, taxifolin, and troxerutin. 

 

Terpenoids: At least 4000 triterpenes are known, and 

they are produced by the mevalonic acid route. In both 

plants and animals, terpenes are the building blocks of 

steroid hormones. These are a group of hydrocarbon 

substances, such as squalene, that are made up of three 

terpenes and six isoprene units. Triterpenoids are 

functionalized triterpenes. One of the largest families of 

natural products. It (also known as "isoprenoids") has 

more than 40,000 different chemicals that are involved in 

both primary and secondary metabolism.
[59]

 These are 

bioactive substances with strong hypoglycemic 

effects.
[60]

 Numerous terpenoids have been shown to 

dampen the risk of developing diabetic retinopathy, 

including: andrographolide, astaxanthin, carotenoids, 

dammarenediol-II, β, ε-Carotene-3,3′-diol, sulforaphane, 

curcumolide, and zerumbone.  

 

Tannins: Innumerable plant species contains tannins, 

which are polyphenolic macromolecules with a 

significant molecular weight. Tannins bind and expel 

proteins as well as a variety of other chemical 

compounds like alkaloids and amino acids. Condensed 

tannins and hydrolysable tannins are the two principal 

types of tannins. Hydrolysable tannins are composed of 

polyol (D-glucose), hydroxyl moiety, and phenolic acids 

such as ellagic acid as well as gallic acid. Condensed 

tannins are a polyphenolic bioflavonoid called 

polyhydroxy flavan-3-ol. In current history, tannins have 

received more attention due to the health benefits 

associated with their antioxidant capacities.
[61]

 Certain 

tannins can minimize diabetic retinopathy, such as: gallic 

acid, chebulagic acid, chebulinic acid and chlorogenic 

acid. 

 

The enumeration of alkaloids, glycosides, tannins, 

flavonoids, and terpenoids along with their origin and 

mode of action are stated in Table 1. 

 

Table 1: Various phytochemicals effective in DR.   

S.no. Phytochemicals Source Mechanism of action Reference 

1. 

Alkaloids 

Betaine  

Capsicum, 

Silybum, Beta 

vulgaris 

↓Akt, VEGF, HIF-1α.  
[62] 

2. Cannabidiol  Cannabis sativa  

Blockage of p38 MAPK. 

↓Separation of BBB, 

ROS, VEGF, TNF-α. 

[63] 

3. Sinomenine  
Sinomenium 

acutum  

↓microglial development, 

TNF-α, Inflammation of 

the retina, IL-1β, ROS, 

IL-6, NF- κB p65. 

[64] 

4. 

Glycosides 

Aloe emodin - 

↓HIF-1α, PHD-

2, expressions in retinal 

neovascularization of 

VEGFA. 

[65] 

5. Arctiin Arctium lappa L. 

↓VEGF, HbA1C. Retinal 

separation and diminution 

in retinal edema. 

[66] 

6. Decursin Angelica gigas 

↓Ocular 

neovascularization, 

VEGFR-2 expression. 

Retinal proliferation, tube 

development and 

angiogenesis of retina. 

[67] 

7. Gastrodin Gastrodia elata 

↓SIRT1/TLR4/NF-κB 

p65 signaling pathway,  

NADPH, Nrf2, GCLM, 

ROS, HO-1 and NQO1, 

expression of cleaved 

caspase-3 and 

cytochrome C. 

↑Bcl-2/Bax. 

[68] 

8. Gentiopicroside - 

↓Oxidative stress, NF-κB, 

ICAM-1, IL-1β, GFAP, 

TNF-α, MDA, expression 

[69] 
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of VEGF, protein 

carbonyl, ROS, HDAC 

overexpression, 

inflammation in retina. 

↑expression of GSH, 

CAT, PEDF and SOD. 

9. Hesperidin Citrus fruits 

↓MDA, AR activity, 

VEGF, IL-1β, ICAM-1, 

TNF-α, oxidative stress, 

angiogenesis of retina, 

inflammation. 

↑thickness of the retina, 

expression of SOD and 

blood retinal barrier 

permeability. 

[70] 

10. Hesperetin Citrus fruits 

↓PKC-β, widened vessels, 

Vascular permeability, 

VEGF, stiffening of BM, 

angiogenesis of retina. 

↓ROS, AQP4, cascape-3, 

inflammation of retina, 

TNF-α, GFAP, IL-1β. 

↑CAT, SOD and GSH 

activities in the retina. 

[71,72] 

11. Lithospermic acid B Salvia miltiorrhiza  

↑capillary BM coat, nerve 

layer thickness, and 

ganglion cells. 

↓hsCRP, MCP1, VEGF, 

8-OHdG and TNF-α, 

vascular leakage, and 

arterial sclerosis of 

capillary. 

[73] 

12. Malvidin 
Saccharomyces 

cerevisiae 

↓Nox4 activity, Mv-3-glc, 

Mv-3-gal, and Mv. 
[74] 

13. Paeoniflorin Paeonia lactiflora 

↓MMP-9 activation, 

inflammation of retina, 

translocation of NF-κB 

p65, p-p38 expression, 

IL-1β, IBA-1. 

↑activation of TLR4, 

thickness of retina, 

expression of SOCS3 and 

gliocyte proliferation of 

retina. 

[75] 

14. Physcion8-O-β-glucopyranoside 

Rheum palmatum, 

Rheum australe, 

and Senna 

obtusifolia  

↓expression of STAT3 

and NORAD, generation 

of ROS, IL-1 β, TNF-α, 

apoptosis of cell. 

↑expression of miR-125. 

[76] 

15. Pterostilbene 

 Vitis rupestris,  

Pterocarpus 

marsupium  

↓Production of ROS, 

TNF-α, IL-1β, mRNA, 

expression of protein and 

NF-κB. 

↑activation of SOD. 

[77] 

16. Sauchinone 
 Saururus 

chinensis   

↓Bcl-2, ROS. 

↑Akt/Nrf2/HO-1 

signaling pathway, CAT, 

Bax, GPx, SOD. 

[78] 

17. Scutellarin 
 Scoparia dulcis,  

Sempervivum 

↓VEGF, activity of 

NADPH oxidase, ROS, 
[79,80] 

https://pubchem.ncbi.nlm.nih.gov/taxonomy/4932
https://pubchem.ncbi.nlm.nih.gov/taxonomy/4932
https://pubchem.ncbi.nlm.nih.gov/taxonomy/103352#section=Natural-Products
https://pubchem.ncbi.nlm.nih.gov/taxonomy/1071187#section=Natural-Products
https://pubchem.ncbi.nlm.nih.gov/taxonomy/1071187#section=Natural-Products
https://pubchem.ncbi.nlm.nih.gov/taxonomy/54806#section=Natural-Products
https://pubchem.ncbi.nlm.nih.gov/taxonomy/54806#section=Natural-Products
https://pubchem.ncbi.nlm.nih.gov/taxonomy/107240#section=Natural-Products
https://pubchem.ncbi.nlm.nih.gov/taxonomy/1538674#section=Natural-Products
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ruthenicum  HIF-1α, ERK, FAK, p-

Src phosphorylation, 

proliferation and 

angiogenesis of retina and 

development of tube. 

18. Shikonin 
Lithospermum 

erythrorhizon 

↓ZO-1, iNOS, MPO, Bax, 

COX-2, inflammation of 

retina, damage of retinal 

cell, vascular 

permeability, edema. 

[81] 

19. 

Flavonoids 

Anthocyanins 

Vaccinium 

myrtillus, 

Vaccinium 

virgatum 

↓ROS, VEGF, tight 

junction proteins loss, 

breakdown of blood 

retina barrier, Mv, MV-3-

gal, Mv-3-glc, BAE, Akt. 

↑SOD, CAT. 

[82,74] 

 

20. α-mangostin 
Garcinia 

mangostana  
↓MDA, TNF-α, VEGF  

[83] 

21. Baicalein 
Scutellaria 

baicalensis  

↓VEGF, IL-1β, TNF-α, 

IL-18, GFAP, 

inflammation of retina, 

GLC loss, activation of 

microglial cell, vascular 

permeability 

[84] 

22. Biochanin Trifolium pratense 

↓VEGF, ICAM-1, TNF- 

α, IL-1β, inflammation, 

angiogenesis of retina. 

↑NF- ΚB.  

[85] 

23. Curcumin Curcuma longa  

↓VEGF, width of the 

retinal capillary BM, 

retinal angiogenesis, 8-

OHdG, nitro tyrosine, 

TNF-α, diameter of 

vessel, MDA, NF-κB 

phosphorylation, 

CaMKII, iNOS, and 

ICAM-1 expressions, 

inflammation of retina, 

IL-1β, HbA1c, vascular 

leakage of retina, 

oxidative stress, IL-6, 

ROS-AKT/mTOR, 

GFAP. 

↑GSH, SOD, T-AOC, 

CAT, Brn3, Ratio of Bcl-

2 to Bax, RecA, Thy-1. 

[86-91] 

 

24. Chrysin 
Passiflora 

caerulea 

↓VEGF, IGF-1, secretion 

of AGE, RAGE, HIF-1α, 

Ang- Tie-2 pathway, 

neovascularization of 

retina, ER stress. 

↑Thickness of retina, 

RPE65, PECAM-1, 

PEDF, RDH5, LRAT, 

ZO-1 and VE- cadherin 

junction proteins. 

[92,93] 

25. Epigallocatechin-3-Gallate 
Camellia sinensis 

L. 
↓ERK1/2, MAPK, VEGF. 

[94] 

https://pubchem.ncbi.nlm.nih.gov/taxonomy/1538674#section=Natural-Products
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26. Eriodictyol 
Eriodictyon 

californicum  

↓oxidative stress, eNOS, 

VEGF, TNF-α, CAM-1, 

ROS, IL8, inflammation 

of retina, BAX, cleaved 

caspase-3. 

↑CAT, SOD, GPX, Bcl-2, 

Nrf2/HO-1 activation. 

[95] 

27. Formononetin 
Astragalus 

membranaceus-s 

↓VEGF, HIF-α, 

neovascularization of 

retina. 

[96] 

28. Genistein Glycine max  

↓VEGF165 and its 

secretion, ALR, ROS, 

TNF-α, retinal microglial 

cell activation, oxidative 

stress, P38 MAPKs and 

ERK activation, retinal 

inflammation and 

angiogenesis. 

[97] 

29. Icariin Epimedii Herba  
↓VEGF, RECA. 

↑Brn3a, Thy-1. 
[98] 

30. Kaempferol  -   

↓VEGF, PGF, retinal 

angiogenesis, Erk1/2, Src, 

Akt1, P13K expression. 

[99] 

31. Luteolin 
Platycodon 

grandiflorus 
↓VEGF, IL-1β, NF-κB.  

[100] 

32. Naringin - 

↓GFAP level, IL-1 β, IL-

6, TNF-α, NF-κB p65, 

oxidative stress, retinal 

inflammation. 

↑GSH, SOD, thickness 

and cell number of 

ganglions. 

[101] 

33. Puerarin  
Pueraria montana, 

Radix Puerariae  

↓ROS, NADPH oxidase 

activity, Rac1, p47phox, 

NF-κB, 8-OHdG, VEGF, 

HIF-α. 

[102,103] 

34. Quercetin - 

↓MCP-1, ROS, IL-6, 

apoptosis of cell, NF-κB.  

↑miR-29b 

overexpression.  

[104] 

35. Resveratrol 
Grapes, and 

berries 

↓oxidative stress, NF-κB, 

IL-6, TNF-α, COX-2, 

apoptosis, cell death, 

basement membrane 

thickness, vascular 

hyperpermeability, eNOS, 

ACE, MM-9 expression. 

[105] 

36. Rutin 
Onions, Apples, 

Tea and Red wine  

↓Pro- apoptotic pathway, 

neuronal apoptosis. 

↑NGF, BDNF. 

[106] 

37. Sesamin Sesamum indicum  

↓TNF-α, microglial 

activation, ICAM-1, 

iNOS, ROS. 

[107] 

38. Silybin Silybum marianum  

↓ICAM-1, Retinal 

vascular leukostasis, 

retinal capillary 

deterioration. 

[108] 

39. Taxifolin - 

↓tGSH level, MDA, 

oxidative stress, TNF-α, 

IL-1β. 

[109] 
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40. Troxerutin Sophora japonica ↓VEGF, oxidative stress. 
[110] 

41. 

Terpenoids 

Andrographolide 
Andrographis 

paniculata  

↓VEGF, TF, retinal 

angiogenesis, I-κK, I-κB, 

NF-κBp65, retinal 

inflammation, Egr-1, 

TNF-α, IL-6, IL-1β.  

[111] 

42. Astaxanthin 

Carotenoids 

present in plants, 

algae and seafood 

↓Oxidative stress, anti- 

apoptosis pathways. 
[112] 

43. Carotenoids β-carotene  
↓Oxidative stress, VEGF, 

ICAM-1, LPO. 
[113] 

44. Curcumolide  Curcuma wenyujin  

↓ICAM-1, retinal 

vascular leakage, 

leukostasis, p38 MAPK, 

TNF-α, NF-κB. 

[114] 

45. Dammarenediol-II Panax ginseng  

↓VEGF, ROS, formation 

of stress fibre, 

microvascular leakage in 

retina, breakage of 

vascular endothelial- 

cadherin.  

[115] 

46. β, ε-Carotene-3,3′-diol  - 
↓Nitro tyrosine level. 

↑ MDA, GSH, GPx.  
[116] 

47. Sulforaphane  - 

↓Oxidative stress, 

inflammation, formation 

of tumour, TNF-α, IL-1β, 

IL-6, NLRP3, cleaved 

caspase-1p20, ASC level.  

↑GSH, CAT, SOD, 

ganglion cells count, 

NQO1, HO-1, Nrf2.  

[117] 

48. Zerumbone Zingiber zerumbet 

↓Nerve fibres layer, 

retinal thickness, ganglion 

cells, IL-6, IL-1β, TNF-α, 

RAGE, VEGF, NF-κB, 

VCAM-1. 

[118] 

49. 

Tannins 

CA, CI, and GA - 

↓Retinal angiogenesis, 

MMP-9 expression, TNF-

α, p38, NF- κB, ERK, IL-

6, MCP-1, IL-8, 

RANTES, MIP-1b, 

eotaxin. 

↑IL-13, IL-10. 

[119] 

50. Chlorogenic acid - 

↓VEFGR2, ERK1/2, 

VEGF, MEK1/2, activity 

of microglia cell, p38, 

retinal 

neovascularization. 

[120] 

 

Abbreviations: ↓: Decrease, ↑: Increase, Akt: protein 

kinase B-1, VEGF: Vascular endothelial growth factor, 

HIF-1α:Hypoxia-inducible factor-1α, MAPK: Mitogen-

activated protein kinases, BBB: Blood retinal barrier, 

ROS: Reactive oxygen species, TNF-α: Tumor necrosis 

factor-α, IL: Interleukin, NFκB: Nuclear factor kappa-

light-chain-enhancer of activated B cells, PHD-2 :prolyl 

hydroxylase domain protein 2, HbA1 C: Glycosylated 

hemoglobin, VEGFR-2:vascular endothelial growth 

factor receptor, SIRT1: sirtuin 1, TLR4:Toll-like 

receptor 4, NADPH: nicotinamide adenine dinucleotide 

phosphate, Nrf2: nuclear factor erythroid 2–related factor 

2, GCLM: c-glutamate-cysteine ligase modifier, HO-1: 

heme-oxygenase-1, NQO1: NADPH quinone 

oxidoreductase 1, Bcl-2: B-cell lymphoma 2, Bax: BCL-

associated X, ICAM-1:Intercellular adhesion molecule-1, 

GFAP: Glial fibrillary acidic protein, MDA: 

Malondialdehyde, HDAC: Histone deacetylases, GSH: 

glutathione peroxidase, SOD: superoxide dismutase, 

PEDF: pigment epithelium derived factor, AR: aldose 
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reductase, PKCβ : protein kinase C β, BM: basement 

membrane, AQP4: aquaporin-4, GFAP: glial fibrillary 

acidic protein, CAT: catalase, hsCRP: high sensitivity C-

reactive protein, MCP-1:Monocyte chemoattractant 

protein-1, 8-OHdG: 8-hydroxy-2-deoxyguanosine, Nox4: 

NADPH oxidase 4, Mv-3-glc: malvidin-3-glucoside, 

Mv-3-gal:malvidin-3-galactoside, Mv: Malvidin, MMP-

9: matrix metalloprotease-9, p-p38: Phosphorylated-p38 

mitogen-activated protein kinase, Iba-1:Ionized calcium-

binding adapter molecule 1, SOCS3: suppressor of 

cytokine signaling 3, STAT3: signal transducer and 

activator of transcription 3, NORAD: Non-Coding RNA 

Activated By DNA Damage, miR-125: MicroRNA-125, 

GPx: glutathione peroxidase, ERK: Extracellular signal-

regulated kinase, FAK: focal adhesion kinase, p-Src: 

Proto-oncogene tyrosine-protein kinase Src, ZO-1:zonula 

occludens 2, iNOS: Inducible nitric oxide synthase, 

MPO: myeloperoxidase, COX-2: cyclooxygenase-2, 

BAE: blueberry anthocyanin extract, GLC: ganglion cell 

layer, CaMKII :Calcium/calmodulin-dependent protein 

kinase II, mTOR :mammalian target of rapamycin, T-

AOC: total antioxidant capacity, IGF-1: insulin-like 

growth factor-I, AGE: advanced glycation end, RAGE: 

Receptor for Advanced Glycation End products, ER: 

endoplasmic reticulum, RPE: retinal pigment epithelium, 

PECAM-1: platelet endothelial cell adhesion molecule-1, 

RDH5:retinol dehydrogenase 5, LRAT: lecithin retinol 

acyl transferase, VE-cadherin: Vascular 

endothelial cadherin, eNOS: Endothelial NOS, ALR: 

aldose reductase, PGF: placenta growth factor, PI3K : 

phosphoinositide 3-kinases, NGF: nerve growth factor, 

BDNF: brain-derived neurotrophic factor, IκB: inhibitor 

of kappa B, IκK: inhibitor of kinase, Egr1: Early growth 

response-1, LPO: lipid peroxidation, MAPK: mitogen-

activated protein kinase, NLRP3: pyrin domain-

containing 3, ASC: adaptor protein apoptosis associated 

speck-like protein, VCAM-1: vascular cell adhesion 

molecule-1, MCP-1: monocyte chemoattractant protein-

1, MIP-1b: macrophage inflammatory protein-1, 

RANTES: regulated upon activation, normal T cell 

expressed and secreted, MEK: mitogen-activated 

extracellular regulated kinase.  

 

CONCLUSION 

The published research showed the evidences of the 

application of medicinal plants, either as the source of 

specific extracted constituents or as a combination of 

various bioactive substances, which exhibits impressive 

mitigation of cellular damage to the retina or the 

enhancement of vision. 

  

As per research studies, phytochemicals reduced 

inflammation, apoptosis pathways and oxidative stress, 

which inhibited the development of DR. Numerous 

phytochemicals, including flavonoids, lignan, 

polyphenols, iridoid glycosides, pyranocoumarin, 

xanthoid, anthraquinone, sesquiterpene, naphthoquinone, 

anthocyanins, isothiocyanate, monoterpene glycoside, 

and isoquinoline, phytoestrogen, inhibited the production 

of ROS, angiogenic factors, such as PKCβ, HIF-1α and 

VEGF, and the activity of antioxidant enzyme including 

MDA, SOD, CAT and NADPH oxidase. Additionally, 

phytochemicals were found to downregulate the 

inflammatory markers IL-6, IL-1β, and TNF-α, which 

have been shown to harm the retina.  
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